NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simp232 GIF version

Theorem simp232 1100
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp232 ((η (θ τ (φ ψ χ)) ζ) → ψ)

Proof of Theorem simp232
StepHypRef Expression
1 simp32 992 . 2 ((θ τ (φ ψ χ)) → ψ)
213ad2ant2 977 1 ((η (θ τ (φ ψ χ)) ζ) → ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator