New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3ad2ant2 | GIF version |
Description: Deduction adding conjuncts to an antecedent. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
3ad2ant.1 | ⊢ (φ → χ) |
Ref | Expression |
---|---|
3ad2ant2 | ⊢ ((ψ ∧ φ ∧ θ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2ant.1 | . . 3 ⊢ (φ → χ) | |
2 | 1 | adantr 451 | . 2 ⊢ ((φ ∧ θ) → χ) |
3 | 2 | 3adant1 973 | 1 ⊢ ((ψ ∧ φ ∧ θ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: simp2l 981 simp2r 982 simp21 988 simp22 989 simp23 990 simp2ll 1022 simp2lr 1023 simp2rl 1024 simp2rr 1025 simp2l1 1054 simp2l2 1055 simp2l3 1056 simp2r1 1057 simp2r2 1058 simp2r3 1059 simp21l 1072 simp21r 1073 simp22l 1074 simp22r 1075 simp23l 1076 simp23r 1077 simp211 1093 simp212 1094 simp213 1095 simp221 1096 simp222 1097 simp223 1098 simp231 1099 simp232 1100 simp233 1101 3anim123i 1137 3jaao 1249 ceqsalt 2882 vtoclgft 2906 vtoclegft 2927 cokrelk 4285 ssfin 4471 ncfinlower 4484 tfin11 4494 funprg 5150 fnco 5192 fvun1 5380 oprssov 5604 po0 5940 connex0 5941 enadj 6061 enprmaplem5 6081 nclenc 6223 lenc 6224 letc 6232 spaccl 6287 |
Copyright terms: Public domain | W3C validator |