Theorem List for New Foundations Explorer - 1001-1100 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | simprl2 1001 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ ((φ
∧ ψ
∧ χ)
∧ θ)) → ψ) |
|
Theorem | simprl3 1002 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ ((φ
∧ ψ
∧ χ)
∧ θ)) → χ) |
|
Theorem | simprr1 1003 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (θ ∧
(φ ∧
ψ ∧
χ))) → φ) |
|
Theorem | simprr2 1004 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (θ ∧
(φ ∧
ψ ∧
χ))) → ψ) |
|
Theorem | simprr3 1005 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (θ ∧
(φ ∧
ψ ∧
χ))) → χ) |
|
Theorem | simpl1l 1006 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ)
∧ χ
∧ θ) ∧
τ) → φ) |
|
Theorem | simpl1r 1007 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ)
∧ χ
∧ θ) ∧
τ) → ψ) |
|
Theorem | simpl2l 1008 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((χ
∧ (φ
∧ ψ)
∧ θ) ∧
τ) → φ) |
|
Theorem | simpl2r 1009 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((χ
∧ (φ
∧ ψ)
∧ θ) ∧
τ) → ψ) |
|
Theorem | simpl3l 1010 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((χ
∧ θ
∧ (φ
∧ ψ))
∧ τ)
→ φ) |
|
Theorem | simpl3r 1011 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((χ
∧ θ
∧ (φ
∧ ψ))
∧ τ)
→ ψ) |
|
Theorem | simpr1l 1012 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ ((φ
∧ ψ)
∧ χ
∧ θ)) → φ) |
|
Theorem | simpr1r 1013 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ ((φ
∧ ψ)
∧ χ
∧ θ)) → ψ) |
|
Theorem | simpr2l 1014 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (χ
∧ (φ
∧ ψ)
∧ θ)) → φ) |
|
Theorem | simpr2r 1015 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (χ
∧ (φ
∧ ψ)
∧ θ)) → ψ) |
|
Theorem | simpr3l 1016 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (χ
∧ θ
∧ (φ
∧ ψ))) → φ) |
|
Theorem | simpr3r 1017 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (χ
∧ θ
∧ (φ
∧ ψ))) → ψ) |
|
Theorem | simp1ll 1018 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ)
∧ χ)
∧ θ
∧ τ)
→ φ) |
|
Theorem | simp1lr 1019 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ)
∧ χ)
∧ θ
∧ τ)
→ ψ) |
|
Theorem | simp1rl 1020 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((χ
∧ (φ
∧ ψ))
∧ θ
∧ τ)
→ φ) |
|
Theorem | simp1rr 1021 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((χ
∧ (φ
∧ ψ))
∧ θ
∧ τ)
→ ψ) |
|
Theorem | simp2ll 1022 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((θ
∧ ((φ
∧ ψ)
∧ χ)
∧ τ)
→ φ) |
|
Theorem | simp2lr 1023 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((θ
∧ ((φ
∧ ψ)
∧ χ)
∧ τ)
→ ψ) |
|
Theorem | simp2rl 1024 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((θ
∧ (χ
∧ (φ
∧ ψ))
∧ τ)
→ φ) |
|
Theorem | simp2rr 1025 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((θ
∧ (χ
∧ (φ
∧ ψ))
∧ τ)
→ ψ) |
|
Theorem | simp3ll 1026 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((θ
∧ τ
∧ ((φ
∧ ψ)
∧ χ))
→ φ) |
|
Theorem | simp3lr 1027 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((θ
∧ τ
∧ ((φ
∧ ψ)
∧ χ))
→ ψ) |
|
Theorem | simp3rl 1028 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((θ
∧ τ
∧ (χ
∧ (φ
∧ ψ))) → φ) |
|
Theorem | simp3rr 1029 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((θ
∧ τ
∧ (χ
∧ (φ
∧ ψ))) → ψ) |
|
Theorem | simpl11 1030 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ
∧ χ)
∧ θ
∧ τ)
∧ η)
→ φ) |
|
Theorem | simpl12 1031 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ
∧ χ)
∧ θ
∧ τ)
∧ η)
→ ψ) |
|
Theorem | simpl13 1032 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ
∧ χ)
∧ θ
∧ τ)
∧ η)
→ χ) |
|
Theorem | simpl21 1033 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ (φ
∧ ψ
∧ χ)
∧ τ)
∧ η)
→ φ) |
|
Theorem | simpl22 1034 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ (φ
∧ ψ
∧ χ)
∧ τ)
∧ η)
→ ψ) |
|
Theorem | simpl23 1035 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ (φ
∧ ψ
∧ χ)
∧ τ)
∧ η)
→ χ) |
|
Theorem | simpl31 1036 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ τ
∧ (φ
∧ ψ
∧ χ))
∧ η)
→ φ) |
|
Theorem | simpl32 1037 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ τ
∧ (φ
∧ ψ
∧ χ))
∧ η)
→ ψ) |
|
Theorem | simpl33 1038 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ τ
∧ (φ
∧ ψ
∧ χ))
∧ η)
→ χ) |
|
Theorem | simpr11 1039 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ ((φ
∧ ψ
∧ χ)
∧ θ
∧ τ))
→ φ) |
|
Theorem | simpr12 1040 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ ((φ
∧ ψ
∧ χ)
∧ θ
∧ τ))
→ ψ) |
|
Theorem | simpr13 1041 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ ((φ
∧ ψ
∧ χ)
∧ θ
∧ τ))
→ χ) |
|
Theorem | simpr21 1042 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ (θ ∧
(φ ∧
ψ ∧
χ) ∧
τ)) → φ) |
|
Theorem | simpr22 1043 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ (θ ∧
(φ ∧
ψ ∧
χ) ∧
τ)) → ψ) |
|
Theorem | simpr23 1044 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ (θ ∧
(φ ∧
ψ ∧
χ) ∧
τ)) → χ) |
|
Theorem | simpr31 1045 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ (θ ∧ τ ∧ (φ ∧ ψ ∧ χ))) → φ) |
|
Theorem | simpr32 1046 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ (θ ∧ τ ∧ (φ ∧ ψ ∧ χ))) → ψ) |
|
Theorem | simpr33 1047 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ (θ ∧ τ ∧ (φ ∧ ψ ∧ χ))) → χ) |
|
Theorem | simp1l1 1048 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ
∧ χ)
∧ θ) ∧
τ ∧
η) → φ) |
|
Theorem | simp1l2 1049 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ
∧ χ)
∧ θ) ∧
τ ∧
η) → ψ) |
|
Theorem | simp1l3 1050 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ
∧ χ)
∧ θ) ∧
τ ∧
η) → χ) |
|
Theorem | simp1r1 1051 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ (φ
∧ ψ
∧ χ))
∧ τ
∧ η)
→ φ) |
|
Theorem | simp1r2 1052 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ (φ
∧ ψ
∧ χ))
∧ τ
∧ η)
→ ψ) |
|
Theorem | simp1r3 1053 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ (φ
∧ ψ
∧ χ))
∧ τ
∧ η)
→ χ) |
|
Theorem | simp2l1 1054 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ ((φ
∧ ψ
∧ χ)
∧ θ) ∧
η) → φ) |
|
Theorem | simp2l2 1055 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ ((φ
∧ ψ
∧ χ)
∧ θ) ∧
η) → ψ) |
|
Theorem | simp2l3 1056 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ ((φ
∧ ψ
∧ χ)
∧ θ) ∧
η) → χ) |
|
Theorem | simp2r1 1057 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (θ ∧
(φ ∧
ψ ∧
χ)) ∧
η) → φ) |
|
Theorem | simp2r2 1058 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (θ ∧
(φ ∧
ψ ∧
χ)) ∧
η) → ψ) |
|
Theorem | simp2r3 1059 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (θ ∧
(φ ∧
ψ ∧
χ)) ∧
η) → χ) |
|
Theorem | simp3l1 1060 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ η
∧ ((φ
∧ ψ
∧ χ)
∧ θ)) → φ) |
|
Theorem | simp3l2 1061 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ η
∧ ((φ
∧ ψ
∧ χ)
∧ θ)) → ψ) |
|
Theorem | simp3l3 1062 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ η
∧ ((φ
∧ ψ
∧ χ)
∧ θ)) → χ) |
|
Theorem | simp3r1 1063 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ η
∧ (θ ∧
(φ ∧
ψ ∧
χ))) → φ) |
|
Theorem | simp3r2 1064 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ η
∧ (θ ∧
(φ ∧
ψ ∧
χ))) → ψ) |
|
Theorem | simp3r3 1065 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ η
∧ (θ ∧
(φ ∧
ψ ∧
χ))) → χ) |
|
Theorem | simp11l 1066 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ)
∧ χ
∧ θ) ∧
τ ∧
η) → φ) |
|
Theorem | simp11r 1067 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ)
∧ χ
∧ θ) ∧
τ ∧
η) → ψ) |
|
Theorem | simp12l 1068 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((χ
∧ (φ
∧ ψ)
∧ θ) ∧
τ ∧
η) → φ) |
|
Theorem | simp12r 1069 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((χ
∧ (φ
∧ ψ)
∧ θ) ∧
τ ∧
η) → ψ) |
|
Theorem | simp13l 1070 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((χ
∧ θ
∧ (φ
∧ ψ))
∧ τ
∧ η)
→ φ) |
|
Theorem | simp13r 1071 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((χ
∧ θ
∧ (φ
∧ ψ))
∧ τ
∧ η)
→ ψ) |
|
Theorem | simp21l 1072 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ ((φ
∧ ψ)
∧ χ
∧ θ) ∧
η) → φ) |
|
Theorem | simp21r 1073 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ ((φ
∧ ψ)
∧ χ
∧ θ) ∧
η) → ψ) |
|
Theorem | simp22l 1074 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (χ
∧ (φ
∧ ψ)
∧ θ) ∧
η) → φ) |
|
Theorem | simp22r 1075 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (χ
∧ (φ
∧ ψ)
∧ θ) ∧
η) → ψ) |
|
Theorem | simp23l 1076 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (χ
∧ θ
∧ (φ
∧ ψ))
∧ η)
→ φ) |
|
Theorem | simp23r 1077 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ (χ
∧ θ
∧ (φ
∧ ψ))
∧ η)
→ ψ) |
|
Theorem | simp31l 1078 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ η
∧ ((φ
∧ ψ)
∧ χ
∧ θ)) → φ) |
|
Theorem | simp31r 1079 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ η
∧ ((φ
∧ ψ)
∧ χ
∧ θ)) → ψ) |
|
Theorem | simp32l 1080 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ η
∧ (χ
∧ (φ
∧ ψ)
∧ θ)) → φ) |
|
Theorem | simp32r 1081 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ η
∧ (χ
∧ (φ
∧ ψ)
∧ θ)) → ψ) |
|
Theorem | simp33l 1082 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ η
∧ (χ
∧ θ
∧ (φ
∧ ψ))) → φ) |
|
Theorem | simp33r 1083 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((τ
∧ η
∧ (χ
∧ θ
∧ (φ
∧ ψ))) → ψ) |
|
Theorem | simp111 1084 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ
∧ χ)
∧ θ
∧ τ)
∧ η
∧ ζ)
→ φ) |
|
Theorem | simp112 1085 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ
∧ χ)
∧ θ
∧ τ)
∧ η
∧ ζ)
→ ψ) |
|
Theorem | simp113 1086 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((φ
∧ ψ
∧ χ)
∧ θ
∧ τ)
∧ η
∧ ζ)
→ χ) |
|
Theorem | simp121 1087 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ (φ
∧ ψ
∧ χ)
∧ τ)
∧ η
∧ ζ)
→ φ) |
|
Theorem | simp122 1088 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ (φ
∧ ψ
∧ χ)
∧ τ)
∧ η
∧ ζ)
→ ψ) |
|
Theorem | simp123 1089 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ (φ
∧ ψ
∧ χ)
∧ τ)
∧ η
∧ ζ)
→ χ) |
|
Theorem | simp131 1090 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ τ
∧ (φ
∧ ψ
∧ χ))
∧ η
∧ ζ)
→ φ) |
|
Theorem | simp132 1091 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ τ
∧ (φ
∧ ψ
∧ χ))
∧ η
∧ ζ)
→ ψ) |
|
Theorem | simp133 1092 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((θ
∧ τ
∧ (φ
∧ ψ
∧ χ))
∧ η
∧ ζ)
→ χ) |
|
Theorem | simp211 1093 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ ((φ
∧ ψ
∧ χ)
∧ θ
∧ τ)
∧ ζ)
→ φ) |
|
Theorem | simp212 1094 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ ((φ
∧ ψ
∧ χ)
∧ θ
∧ τ)
∧ ζ)
→ ψ) |
|
Theorem | simp213 1095 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ ((φ
∧ ψ
∧ χ)
∧ θ
∧ τ)
∧ ζ)
→ χ) |
|
Theorem | simp221 1096 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ (θ ∧
(φ ∧
ψ ∧
χ) ∧
τ) ∧
ζ) → φ) |
|
Theorem | simp222 1097 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ (θ ∧
(φ ∧
ψ ∧
χ) ∧
τ) ∧
ζ) → ψ) |
|
Theorem | simp223 1098 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ (θ ∧
(φ ∧
ψ ∧
χ) ∧
τ) ∧
ζ) → χ) |
|
Theorem | simp231 1099 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ (θ ∧ τ ∧ (φ ∧ ψ ∧ χ)) ∧ ζ) → φ) |
|
Theorem | simp232 1100 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((η
∧ (θ ∧ τ ∧ (φ ∧ ψ ∧ χ)) ∧ ζ) → ψ) |