| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > simplbi2 | GIF version | ||
| Description: Deduction eliminating a conjunct. Automatically derived from simplbi2VD in set.mm. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| pm3.26bi2.1 | ⊢ (φ ↔ (ψ ∧ χ)) |
| Ref | Expression |
|---|---|
| simplbi2 | ⊢ (ψ → (χ → φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.26bi2.1 | . . 3 ⊢ (φ ↔ (ψ ∧ χ)) | |
| 2 | 1 | biimpri 197 | . 2 ⊢ ((ψ ∧ χ) → φ) |
| 3 | 2 | ex 423 | 1 ⊢ (ψ → (χ → φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: simplbi2com 1374 sspss 3369 neldif 3392 reuss2 3536 pssdifn0 3612 sfinltfin 4536 |
| Copyright terms: Public domain | W3C validator |