| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dfbi2 | GIF version | ||
| Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| dfbi2 | ⊢ ((φ ↔ ψ) ↔ ((φ → ψ) ∧ (ψ → φ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 184 | . 2 ⊢ ((φ ↔ ψ) ↔ ¬ ((φ → ψ) → ¬ (ψ → φ))) | |
| 2 | df-an 360 | . 2 ⊢ (((φ → ψ) ∧ (ψ → φ)) ↔ ¬ ((φ → ψ) → ¬ (ψ → φ))) | |
| 3 | 1, 2 | bitr4i 243 | 1 ⊢ ((φ ↔ ψ) ↔ ((φ → ψ) ∧ (ψ → φ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: dfbi 610 pm4.71 611 pm5.17 858 xor 861 albiim 1611 nfbid 1832 nfbiOLD 1835 sbbi 2071 cleqh 2450 ralbiim 2752 reu8 3033 sseq2 3294 funeq 5128 fun11 5160 dffo3 5423 |
| Copyright terms: Public domain | W3C validator |