NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simpr2r GIF version

Theorem simpr2r 1015
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpr2r ((τ (χ (φ ψ) θ)) → ψ)

Proof of Theorem simpr2r
StepHypRef Expression
1 simp2r 982 . 2 ((χ (φ ψ) θ) → ψ)
21adantl 452 1 ((τ (χ (φ ψ) θ)) → ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  nnsucelr  4429
  Copyright terms: Public domain W3C validator