New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simp2r | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp2r | ⊢ ((φ ∧ (ψ ∧ χ) ∧ θ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 447 | . 2 ⊢ ((ψ ∧ χ) → χ) | |
2 | 1 | 3ad2ant2 977 | 1 ⊢ ((φ ∧ (ψ ∧ χ) ∧ θ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: simpl2r 1009 simpr2r 1015 simp12r 1069 simp22r 1075 simp32r 1081 tfin11 4494 tfinpw1 4495 tfinltfinlem1 4501 nnadjoinpw 4522 funprgOLD 5151 f1oiso2 5501 enadjlem1 6060 |
Copyright terms: Public domain | W3C validator |