NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simp2r GIF version

Theorem simp2r 982
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.)
Assertion
Ref Expression
simp2r ((φ (ψ χ) θ) → χ)

Proof of Theorem simp2r
StepHypRef Expression
1 simpr 447 . 2 ((ψ χ) → χ)
213ad2ant2 977 1 ((φ (ψ χ) θ) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  simpl2r  1009  simpr2r  1015  simp12r  1069  simp22r  1075  simp32r  1081  tfin11  4494  tfinpw1  4495  tfinltfinlem1  4501  nnadjoinpw  4522  funprgOLD  5151  f1oiso2  5501  enadjlem1  6060
  Copyright terms: Public domain W3C validator