NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simprlr GIF version

Theorem simprlr 739
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.)
Assertion
Ref Expression
simprlr ((φ ((ψ χ) θ)) → χ)

Proof of Theorem simprlr
StepHypRef Expression
1 simpr 447 . 2 ((ψ χ) → χ)
21ad2antrl 708 1 ((φ ((ψ χ) θ)) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  nnsucelr  4429  nnpw1ex  4485  sfinltfin  4536  enprmaplem3  6079
  Copyright terms: Public domain W3C validator