New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ad2antrl | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
ad2antrl | ⊢ ((χ ∧ (φ ∧ θ)) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (φ → ψ) | |
2 | 1 | adantr 451 | . 2 ⊢ ((φ ∧ θ) → ψ) |
3 | 2 | adantl 452 | 1 ⊢ ((χ ∧ (φ ∧ θ)) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: simprl 732 simprll 738 simprlr 739 preaddccan2 4456 ncfinlower 4484 tfinnn 4535 sfinltfin 4536 enadjlem1 6060 sbthlem3 6206 nchoicelem17 6306 nchoice 6309 |
Copyright terms: Public domain | W3C validator |