![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > simprrl | GIF version |
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
Ref | Expression |
---|---|
simprrl | ⊢ ((φ ∧ (ψ ∧ (χ ∧ θ))) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . 2 ⊢ ((χ ∧ θ) → χ) | |
2 | 1 | ad2antll 709 | 1 ⊢ ((φ ∧ (ψ ∧ (χ ∧ θ))) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: nnsucelr 4428 ncfinraise 4481 ncfinlower 4483 tfin11 4493 sfin112 4529 sfintfin 4532 sfinltfin 4535 |
Copyright terms: Public domain | W3C validator |