NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  spfalw GIF version

Theorem spfalw 1672
Description: Version of sp 1747 when φ is false. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 23-Apr-2017.) (Proof shortened by Wolf Lammen, 25-Dec-2017.)
Hypothesis
Ref Expression
spfalw.1 ¬ φ
Assertion
Ref Expression
spfalw (xφφ)

Proof of Theorem spfalw
StepHypRef Expression
1 spfalw.1 . . 3 ¬ φ
21hbth 1552 . 2 φx ¬ φ)
32spnfw 1670 1 (xφφ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-9 1654
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by:  19.2OLD  1700  ax9dgen  1716
  Copyright terms: Public domain W3C validator