New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvaliw | GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 19-Apr-2017.) |
Ref | Expression |
---|---|
cbvaliw.1 | ⊢ (∀xφ → ∀y∀xφ) |
cbvaliw.2 | ⊢ (¬ ψ → ∀x ¬ ψ) |
cbvaliw.3 | ⊢ (x = y → (φ → ψ)) |
Ref | Expression |
---|---|
cbvaliw | ⊢ (∀xφ → ∀yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvaliw.1 | . 2 ⊢ (∀xφ → ∀y∀xφ) | |
2 | cbvaliw.2 | . . 3 ⊢ (¬ ψ → ∀x ¬ ψ) | |
3 | cbvaliw.3 | . . 3 ⊢ (x = y → (φ → ψ)) | |
4 | 2, 3 | spimw 1668 | . 2 ⊢ (∀xφ → ψ) |
5 | 1, 4 | alrimih 1565 | 1 ⊢ (∀xφ → ∀yψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-9 1654 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: cbvalw 1701 |
Copyright terms: Public domain | W3C validator |