New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl233anc GIF version

Theorem syl233anc 1211
 Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (φψ)
sylXanc.2 (φχ)
sylXanc.3 (φθ)
sylXanc.4 (φτ)
sylXanc.5 (φη)
sylXanc.6 (φζ)
sylXanc.7 (φσ)
sylXanc.8 (φρ)
syl233anc.9 (((ψ χ) (θ τ η) (ζ σ ρ)) → μ)
Assertion
Ref Expression
syl233anc (φμ)

Proof of Theorem syl233anc
StepHypRef Expression
1 sylXanc.1 . . 3 (φψ)
2 sylXanc.2 . . 3 (φχ)
31, 2jca 518 . 2 (φ → (ψ χ))
4 sylXanc.3 . 2 (φθ)
5 sylXanc.4 . 2 (φτ)
6 sylXanc.5 . 2 (φη)
7 sylXanc.6 . 2 (φζ)
8 sylXanc.7 . 2 (φσ)
9 sylXanc.8 . 2 (φρ)
10 syl233anc.9 . 2 (((ψ χ) (θ τ η) (ζ σ ρ)) → μ)
113, 4, 5, 6, 7, 8, 9, 10syl133anc 1205 1 (φμ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 358   ∧ w3a 934 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator