New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl133anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (φ → ψ) |
sylXanc.2 | ⊢ (φ → χ) |
sylXanc.3 | ⊢ (φ → θ) |
sylXanc.4 | ⊢ (φ → τ) |
sylXanc.5 | ⊢ (φ → η) |
sylXanc.6 | ⊢ (φ → ζ) |
sylXanc.7 | ⊢ (φ → σ) |
syl133anc.8 | ⊢ ((ψ ∧ (χ ∧ θ ∧ τ) ∧ (η ∧ ζ ∧ σ)) → ρ) |
Ref | Expression |
---|---|
syl133anc | ⊢ (φ → ρ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (φ → ψ) | |
2 | sylXanc.2 | . 2 ⊢ (φ → χ) | |
3 | sylXanc.3 | . 2 ⊢ (φ → θ) | |
4 | sylXanc.4 | . 2 ⊢ (φ → τ) | |
5 | sylXanc.5 | . . 3 ⊢ (φ → η) | |
6 | sylXanc.6 | . . 3 ⊢ (φ → ζ) | |
7 | sylXanc.7 | . . 3 ⊢ (φ → σ) | |
8 | 5, 6, 7 | 3jca 1132 | . 2 ⊢ (φ → (η ∧ ζ ∧ σ)) |
9 | syl133anc.8 | . 2 ⊢ ((ψ ∧ (χ ∧ θ ∧ τ) ∧ (η ∧ ζ ∧ σ)) → ρ) | |
10 | 1, 2, 3, 4, 8, 9 | syl131anc 1195 | 1 ⊢ (φ → ρ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: syl233anc 1211 |
Copyright terms: Public domain | W3C validator |