NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl8ib GIF version

Theorem syl8ib 222
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.)
Hypotheses
Ref Expression
syl8ib.1 (φ → (ψ → (χθ)))
syl8ib.2 (θτ)
Assertion
Ref Expression
syl8ib (φ → (ψ → (χτ)))

Proof of Theorem syl8ib
StepHypRef Expression
1 syl8ib.1 . 2 (φ → (ψ → (χθ)))
2 syl8ib.2 . . 3 (θτ)
32biimpi 186 . 2 (θτ)
41, 3syl8 65 1 (φ → (ψ → (χτ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  pm3.2an3  1131  ncfinraise  4482
  Copyright terms: Public domain W3C validator