| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm3.2an3 | GIF version | ||
| Description: pm3.2 434 for a triple conjunction. (Contributed by Alan Sare, 24-Oct-2011.) |
| Ref | Expression |
|---|---|
| pm3.2an3 | ⊢ (φ → (ψ → (χ → (φ ∧ ψ ∧ χ)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 434 | . . 3 ⊢ ((φ ∧ ψ) → (χ → ((φ ∧ ψ) ∧ χ))) | |
| 2 | 1 | ex 423 | . 2 ⊢ (φ → (ψ → (χ → ((φ ∧ ψ) ∧ χ)))) |
| 3 | df-3an 936 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) | |
| 4 | 3 | bicomi 193 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) ↔ (φ ∧ ψ ∧ χ)) |
| 5 | 2, 4 | syl8ib 222 | 1 ⊢ (φ → (ψ → (χ → (φ ∧ ψ ∧ χ)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: 3exp 1150 |
| Copyright terms: Public domain | W3C validator |