NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm3.2an3 GIF version

Theorem pm3.2an3 1131
Description: pm3.2 434 for a triple conjunction. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
pm3.2an3 (φ → (ψ → (χ → (φ ψ χ))))

Proof of Theorem pm3.2an3
StepHypRef Expression
1 pm3.2 434 . . 3 ((φ ψ) → (χ → ((φ ψ) χ)))
21ex 423 . 2 (φ → (ψ → (χ → ((φ ψ) χ))))
3 df-3an 936 . . 3 ((φ ψ χ) ↔ ((φ ψ) χ))
43bicomi 193 . 2 (((φ ψ) χ) ↔ (φ ψ χ))
52, 4syl8ib 222 1 (φ → (ψ → (χ → (φ ψ χ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  3exp  1150
  Copyright terms: Public domain W3C validator