New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpbird | GIF version |
Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
mpbird.min | ⊢ (φ → χ) |
mpbird.maj | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
mpbird | ⊢ (φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbird.min | . 2 ⊢ (φ → χ) | |
2 | mpbird.maj | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
3 | 2 | biimprd 214 | . 2 ⊢ (φ → (χ → ψ)) |
4 | 1, 3 | mpd 14 | 1 ⊢ (φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: mpbiri 224 mpbir2and 888 mpbir3and 1135 eqeltrd 2427 eqnetrd 2535 3netr4d 2544 eqsstrd 3306 3sstr4d 3315 lefinaddc 4451 nulge 4457 ltfinp1 4463 tfinprop 4490 sucevenodd 4511 sucoddeven 4512 sfintfin 4533 eqbrtrd 4660 3brtr4d 4670 eqfnfvd 5396 fvimacnvi 5403 fconst2g 5453 f1ofveu 5481 f1od 5727 brtxp 5784 trrd 5926 refrd 5927 antird 5929 connexrd 5931 iserd 5943 enmap2lem5 6068 enmap1lem5 6074 enprmaplem5 6081 nenpw1pwlem2 6086 pw1eltc 6163 ce0nnuli 6179 ce0 6191 lecidg 6197 lec0cg 6199 lecncvg 6200 addlec 6209 nmembers1lem3 6271 spacis 6289 nchoicelem17 6306 dmfrec 6317 frec0 6322 frecsuc 6323 |
Copyright terms: Public domain | W3C validator |