Step | Hyp | Ref
| Expression |
1 | | ncfinraiselem2 4481 |
. . . 4
⊢ {m ∣ ∀a ∈ m ∀b ∈ m ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)} ∈
V |
2 | | raleq 2808 |
. . . . 5
⊢ (m = 0c → (∀b ∈ m ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) ↔ ∀b ∈ 0c ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
3 | 2 | raleqbi1dv 2816 |
. . . 4
⊢ (m = 0c → (∀a ∈ m ∀b ∈ m ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) ↔ ∀a ∈ 0c ∀b ∈ 0c ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
4 | | raleq 2808 |
. . . . 5
⊢ (m = k →
(∀b
∈ m ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) ↔ ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
5 | 4 | raleqbi1dv 2816 |
. . . 4
⊢ (m = k →
(∀a
∈ m ∀b ∈ m ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) ↔ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
6 | | raleq 2808 |
. . . . 5
⊢ (m = (k
+c 1c) → (∀b ∈ m ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) ↔ ∀b ∈ (k
+c 1c)∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
7 | 6 | raleqbi1dv 2816 |
. . . 4
⊢ (m = (k
+c 1c) → (∀a ∈ m ∀b ∈ m ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) ↔ ∀a ∈ (k
+c 1c)∀b ∈ (k
+c 1c)∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
8 | | raleq 2808 |
. . . . 5
⊢ (m = M →
(∀b
∈ m ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) ↔ ∀b ∈ M ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
9 | 8 | raleqbi1dv 2816 |
. . . 4
⊢ (m = M →
(∀a
∈ m ∀b ∈ m ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) ↔ ∀a ∈ M ∀b ∈ M ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
10 | | el0c 4422 |
. . . . . 6
⊢ (a ∈
0c ↔ a = ∅) |
11 | | el0c 4422 |
. . . . . 6
⊢ (b ∈
0c ↔ b = ∅) |
12 | | peano1 4403 |
. . . . . . . 8
⊢
0c ∈ Nn |
13 | | nulel0c 4423 |
. . . . . . . . 9
⊢ ∅ ∈
0c |
14 | 13, 13 | pm3.2i 441 |
. . . . . . . 8
⊢ (∅ ∈
0c ∧ ∅ ∈
0c) |
15 | | eleq2 2414 |
. . . . . . . . . 10
⊢ (n = 0c → (∅ ∈ n ↔ ∅ ∈ 0c)) |
16 | 15, 15 | anbi12d 691 |
. . . . . . . . 9
⊢ (n = 0c → ((∅ ∈ n ∧ ∅ ∈ n) ↔ (∅
∈ 0c ∧ ∅ ∈ 0c))) |
17 | 16 | rspcev 2956 |
. . . . . . . 8
⊢
((0c ∈ Nn ∧ (∅ ∈
0c ∧ ∅ ∈
0c)) → ∃n ∈ Nn (∅ ∈ n ∧ ∅ ∈ n)) |
18 | 12, 14, 17 | mp2an 653 |
. . . . . . 7
⊢ ∃n ∈ Nn (∅ ∈ n ∧ ∅ ∈ n) |
19 | | pw1eq 4144 |
. . . . . . . . . . 11
⊢ (a = ∅ →
℘1a = ℘1∅) |
20 | | pw10 4162 |
. . . . . . . . . . 11
⊢ ℘1∅
= ∅ |
21 | 19, 20 | syl6eq 2401 |
. . . . . . . . . 10
⊢ (a = ∅ →
℘1a = ∅) |
22 | 21 | eleq1d 2419 |
. . . . . . . . 9
⊢ (a = ∅ →
(℘1a ∈ n ↔ ∅ ∈ n)) |
23 | | pw1eq 4144 |
. . . . . . . . . . 11
⊢ (b = ∅ →
℘1b = ℘1∅) |
24 | 23, 20 | syl6eq 2401 |
. . . . . . . . . 10
⊢ (b = ∅ →
℘1b = ∅) |
25 | 24 | eleq1d 2419 |
. . . . . . . . 9
⊢ (b = ∅ →
(℘1b ∈ n ↔ ∅ ∈ n)) |
26 | 22, 25 | bi2anan9 843 |
. . . . . . . 8
⊢ ((a = ∅ ∧ b = ∅) → ((℘1a ∈ n ∧ ℘1b ∈ n) ↔ (∅
∈ n ∧ ∅ ∈ n))) |
27 | 26 | rexbidv 2636 |
. . . . . . 7
⊢ ((a = ∅ ∧ b = ∅) → (∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) ↔ ∃n ∈ Nn (∅ ∈ n ∧ ∅ ∈ n))) |
28 | 18, 27 | mpbiri 224 |
. . . . . 6
⊢ ((a = ∅ ∧ b = ∅) → ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)) |
29 | 10, 11, 28 | syl2anb 465 |
. . . . 5
⊢ ((a ∈
0c ∧ b ∈
0c) → ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)) |
30 | 29 | rgen2a 2681 |
. . . 4
⊢ ∀a ∈ 0c ∀b ∈ 0c ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) |
31 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎa k ∈ Nn |
32 | | nfra1 2665 |
. . . . . . 7
⊢ Ⅎa∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) |
33 | 31, 32 | nfan 1824 |
. . . . . 6
⊢ Ⅎa(k ∈ Nn ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)) |
34 | | nfv 1619 |
. . . . . . . 8
⊢ Ⅎb k ∈ Nn |
35 | | nfra2 2669 |
. . . . . . . 8
⊢ Ⅎb∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) |
36 | 34, 35 | nfan 1824 |
. . . . . . 7
⊢ Ⅎb(k ∈ Nn ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)) |
37 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎb a ∈ (k
+c 1c) |
38 | | reeanv 2779 |
. . . . . . . . . 10
⊢ (∃c ∈ k ∃d ∈ k (∃x ∈ ∼ ca = (c ∪ {x})
∧ ∃y ∈ ∼ db = (d ∪ {y}))
↔ (∃c ∈ k ∃x ∈ ∼ ca = (c ∪ {x})
∧ ∃d ∈ k ∃y ∈ ∼ db = (d ∪ {y}))) |
39 | | reeanv 2779 |
. . . . . . . . . . 11
⊢ (∃x ∈ ∼ c∃y ∈ ∼ d(a = (c ∪ {x})
∧ b =
(d ∪ {y})) ↔ (∃x ∈ ∼ ca = (c ∪ {x})
∧ ∃y ∈ ∼ db = (d ∪ {y}))) |
40 | 39 | 2rexbii 2642 |
. . . . . . . . . 10
⊢ (∃c ∈ k ∃d ∈ k ∃x ∈ ∼ c∃y ∈ ∼ d(a = (c ∪ {x})
∧ b =
(d ∪ {y})) ↔ ∃c ∈ k ∃d ∈ k (∃x ∈ ∼ ca = (c ∪ {x})
∧ ∃y ∈ ∼ db = (d ∪ {y}))) |
41 | | elsuc 4414 |
. . . . . . . . . . 11
⊢ (a ∈ (k +c 1c) ↔
∃c ∈ k ∃x ∈ ∼ ca = (c ∪ {x})) |
42 | | elsuc 4414 |
. . . . . . . . . . 11
⊢ (b ∈ (k +c 1c) ↔
∃d ∈ k ∃y ∈ ∼ db = (d ∪ {y})) |
43 | 41, 42 | anbi12i 678 |
. . . . . . . . . 10
⊢ ((a ∈ (k +c 1c) ∧ b ∈ (k
+c 1c)) ↔ (∃c ∈ k ∃x ∈ ∼ ca = (c ∪ {x})
∧ ∃d ∈ k ∃y ∈ ∼ db = (d ∪ {y}))) |
44 | 38, 40, 43 | 3bitr4ri 269 |
. . . . . . . . 9
⊢ ((a ∈ (k +c 1c) ∧ b ∈ (k
+c 1c)) ↔ ∃c ∈ k ∃d ∈ k ∃x ∈ ∼ c∃y ∈ ∼ d(a = (c ∪ {x})
∧ b =
(d ∪ {y}))) |
45 | | pw1eq 4144 |
. . . . . . . . . . . . . . . . 17
⊢ (a = c →
℘1a = ℘1c) |
46 | 45 | eleq1d 2419 |
. . . . . . . . . . . . . . . 16
⊢ (a = c →
(℘1a ∈ n ↔ ℘1c ∈ n)) |
47 | 46 | anbi1d 685 |
. . . . . . . . . . . . . . 15
⊢ (a = c →
((℘1a ∈ n ∧ ℘1b ∈ n) ↔ (℘1c ∈ n ∧ ℘1b ∈ n))) |
48 | 47 | rexbidv 2636 |
. . . . . . . . . . . . . 14
⊢ (a = c →
(∃n
∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) ↔ ∃n ∈ Nn (℘1c ∈ n ∧ ℘1b ∈ n))) |
49 | | pw1eq 4144 |
. . . . . . . . . . . . . . . . 17
⊢ (b = d →
℘1b = ℘1d) |
50 | 49 | eleq1d 2419 |
. . . . . . . . . . . . . . . 16
⊢ (b = d →
(℘1b ∈ n ↔ ℘1d ∈ n)) |
51 | 50 | anbi2d 684 |
. . . . . . . . . . . . . . 15
⊢ (b = d →
((℘1c ∈ n ∧ ℘1b ∈ n) ↔ (℘1c ∈ n ∧ ℘1d ∈ n))) |
52 | 51 | rexbidv 2636 |
. . . . . . . . . . . . . 14
⊢ (b = d →
(∃n
∈ Nn (℘1c ∈ n ∧ ℘1b ∈ n) ↔ ∃n ∈ Nn (℘1c ∈ n ∧ ℘1d ∈ n))) |
53 | 48, 52 | rspc2v 2962 |
. . . . . . . . . . . . 13
⊢ ((c ∈ k ∧ d ∈ k) → (∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) → ∃n ∈ Nn (℘1c ∈ n ∧ ℘1d ∈ n))) |
54 | 53 | com12 27 |
. . . . . . . . . . . 12
⊢ (∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) → ((c
∈ k ∧ d ∈ k) →
∃n ∈ Nn (℘1c ∈ n ∧ ℘1d ∈ n))) |
55 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . 20
⊢ x ∈
V |
56 | 55 | elcompl 3226 |
. . . . . . . . . . . . . . . . . . 19
⊢ (x ∈ ∼ c ↔ ¬ x
∈ c) |
57 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . 20
⊢ y ∈
V |
58 | 57 | elcompl 3226 |
. . . . . . . . . . . . . . . . . . 19
⊢ (y ∈ ∼ d ↔ ¬ y
∈ d) |
59 | 56, 58 | anbi12i 678 |
. . . . . . . . . . . . . . . . . 18
⊢ ((x ∈ ∼ c ∧ y ∈ ∼ d) ↔ (¬ x ∈ c ∧ ¬ y ∈ d)) |
60 | 59 | anbi2i 675 |
. . . . . . . . . . . . . . . . 17
⊢ (((c ∈ k ∧ d ∈ k) ∧ (x ∈ ∼ c ∧ y ∈ ∼ d)) ↔ ((c
∈ k ∧ d ∈ k) ∧ (¬ x ∈ c ∧ ¬ y ∈ d))) |
61 | | peano2 4404 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (n ∈ Nn → (n
+c 1c) ∈
Nn ) |
62 | 61 | ad3antrrr 710 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ k ∈ Nn ) ∧ ((c ∈ k ∧ d ∈ k) ∧ (¬
x ∈
c ∧ ¬
y ∈
d))) → (n +c 1c) ∈ Nn
) |
63 | | simplrl 736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ k ∈ Nn ) → ℘1c ∈ n) |
64 | 63 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ k ∈ Nn ) ∧ ((c ∈ k ∧ d ∈ k) ∧ (¬
x ∈
c ∧ ¬
y ∈
d))) → ℘1c ∈ n) |
65 | | simprrl 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ k ∈ Nn ) ∧ ((c ∈ k ∧ d ∈ k) ∧ (¬
x ∈
c ∧ ¬
y ∈
d))) → ¬ x ∈ c) |
66 | | snelpw1 4147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({x} ∈ ℘1c ↔ x ∈ c) |
67 | 65, 66 | sylnibr 296 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ k ∈ Nn ) ∧ ((c ∈ k ∧ d ∈ k) ∧ (¬
x ∈
c ∧ ¬
y ∈
d))) → ¬ {x} ∈ ℘1c) |
68 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {x} ∈
V |
69 | 68 | elsuci 4415 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((℘1c ∈ n ∧ ¬ {x} ∈ ℘1c) → (℘1c ∪ {{x}})
∈ (n
+c 1c)) |
70 | 64, 67, 69 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ k ∈ Nn ) ∧ ((c ∈ k ∧ d ∈ k) ∧ (¬
x ∈
c ∧ ¬
y ∈
d))) → (℘1c ∪ {{x}})
∈ (n
+c 1c)) |
71 | | simplrr 737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ k ∈ Nn ) → ℘1d ∈ n) |
72 | 71 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ k ∈ Nn ) ∧ ((c ∈ k ∧ d ∈ k) ∧ (¬
x ∈
c ∧ ¬
y ∈
d))) → ℘1d ∈ n) |
73 | | simprrr 741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ k ∈ Nn ) ∧ ((c ∈ k ∧ d ∈ k) ∧ (¬
x ∈
c ∧ ¬
y ∈
d))) → ¬ y ∈ d) |
74 | | snelpw1 4147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({y} ∈ ℘1d ↔ y ∈ d) |
75 | 73, 74 | sylnibr 296 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ k ∈ Nn ) ∧ ((c ∈ k ∧ d ∈ k) ∧ (¬
x ∈
c ∧ ¬
y ∈
d))) → ¬ {y} ∈ ℘1d) |
76 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {y} ∈
V |
77 | 76 | elsuci 4415 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((℘1d ∈ n ∧ ¬ {y} ∈ ℘1d) → (℘1d ∪ {{y}})
∈ (n
+c 1c)) |
78 | 72, 75, 77 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ k ∈ Nn ) ∧ ((c ∈ k ∧ d ∈ k) ∧ (¬
x ∈
c ∧ ¬
y ∈
d))) → (℘1d ∪ {{y}})
∈ (n
+c 1c)) |
79 | | eleq2 2414 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (m = (n
+c 1c) → ((℘1c ∪ {{x}})
∈ m
↔ (℘1c ∪ {{x}})
∈ (n
+c 1c))) |
80 | | eleq2 2414 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (m = (n
+c 1c) → ((℘1d ∪ {{y}})
∈ m
↔ (℘1d ∪ {{y}})
∈ (n
+c 1c))) |
81 | 79, 80 | anbi12d 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (m = (n
+c 1c) → (((℘1c ∪ {{x}})
∈ m ∧ (℘1d ∪ {{y}})
∈ m)
↔ ((℘1c ∪ {{x}})
∈ (n
+c 1c) ∧
(℘1d ∪ {{y}})
∈ (n
+c 1c)))) |
82 | 81 | rspcev 2956 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((n +c 1c) ∈ Nn ∧ ((℘1c ∪ {{x}})
∈ (n
+c 1c) ∧
(℘1d ∪ {{y}})
∈ (n
+c 1c))) → ∃m ∈ Nn ((℘1c ∪ {{x}})
∈ m ∧ (℘1d ∪ {{y}})
∈ m)) |
83 | 62, 70, 78, 82 | syl12anc 1180 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ k ∈ Nn ) ∧ ((c ∈ k ∧ d ∈ k) ∧ (¬
x ∈
c ∧ ¬
y ∈
d))) → ∃m ∈ Nn ((℘1c ∪ {{x}})
∈ m ∧ (℘1d ∪ {{y}})
∈ m)) |
84 | 83 | ex 423 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ k ∈ Nn ) → (((c
∈ k ∧ d ∈ k) ∧ (¬ x ∈ c ∧ ¬ y ∈ d)) →
∃m ∈ Nn ((℘1c ∪ {{x}})
∈ m ∧ (℘1d ∪ {{y}})
∈ m))) |
85 | 84 | ex 423 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((n ∈ Nn ∧ (℘1c ∈ n ∧ ℘1d ∈ n)) → (k
∈ Nn →
(((c ∈
k ∧
d ∈
k) ∧
(¬ x ∈ c ∧ ¬ y ∈ d)) →
∃m ∈ Nn ((℘1c ∪ {{x}})
∈ m ∧ (℘1d ∪ {{y}})
∈ m)))) |
86 | 85 | rexlimiva 2734 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∃n ∈ Nn (℘1c ∈ n ∧ ℘1d ∈ n) → (k
∈ Nn →
(((c ∈
k ∧
d ∈
k) ∧
(¬ x ∈ c ∧ ¬ y ∈ d)) →
∃m ∈ Nn ((℘1c ∪ {{x}})
∈ m ∧ (℘1d ∪ {{y}})
∈ m)))) |
87 | | eleq2 2414 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (m = n →
((℘1c ∪ {{x}})
∈ m
↔ (℘1c ∪ {{x}})
∈ n)) |
88 | | eleq2 2414 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (m = n →
((℘1d ∪ {{y}})
∈ m
↔ (℘1d ∪ {{y}})
∈ n)) |
89 | 87, 88 | anbi12d 691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (m = n →
(((℘1c ∪ {{x}})
∈ m ∧ (℘1d ∪ {{y}})
∈ m)
↔ ((℘1c ∪ {{x}})
∈ n ∧ (℘1d ∪ {{y}})
∈ n))) |
90 | 89 | cbvrexv 2837 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∃m ∈ Nn ((℘1c ∪ {{x}})
∈ m ∧ (℘1d ∪ {{y}})
∈ m)
↔ ∃n ∈ Nn ((℘1c ∪ {{x}})
∈ n ∧ (℘1d ∪ {{y}})
∈ n)) |
91 | 86, 90 | syl8ib 222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∃n ∈ Nn (℘1c ∈ n ∧ ℘1d ∈ n) → (k
∈ Nn →
(((c ∈
k ∧
d ∈
k) ∧
(¬ x ∈ c ∧ ¬ y ∈ d)) →
∃n ∈ Nn ((℘1c ∪ {{x}})
∈ n ∧ (℘1d ∪ {{y}})
∈ n)))) |
92 | 91 | com12 27 |
. . . . . . . . . . . . . . . . . . 19
⊢ (k ∈ Nn → (∃n ∈ Nn (℘1c ∈ n ∧ ℘1d ∈ n) → (((c
∈ k ∧ d ∈ k) ∧ (¬ x ∈ c ∧ ¬ y ∈ d)) →
∃n ∈ Nn ((℘1c ∪ {{x}})
∈ n ∧ (℘1d ∪ {{y}})
∈ n)))) |
93 | 92 | imp31 421 |
. . . . . . . . . . . . . . . . . 18
⊢ (((k ∈ Nn ∧ ∃n ∈ Nn (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ ((c ∈ k ∧ d ∈ k) ∧ (¬
x ∈
c ∧ ¬
y ∈
d))) → ∃n ∈ Nn ((℘1c ∪ {{x}})
∈ n ∧ (℘1d ∪ {{y}})
∈ n)) |
94 | | pw1eq 4144 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (a = (c ∪
{x}) → ℘1a = ℘1(c ∪ {x})) |
95 | | pw1un 4164 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ℘1(c ∪ {x}) =
(℘1c ∪ ℘1{x}) |
96 | 55 | pw1sn 4166 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ℘1{x} = {{x}} |
97 | 96 | uneq2i 3416 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (℘1c ∪ ℘1{x}) = (℘1c ∪ {{x}}) |
98 | 95, 97 | eqtri 2373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℘1(c ∪ {x}) =
(℘1c ∪ {{x}}) |
99 | 94, 98 | syl6eq 2401 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (a = (c ∪
{x}) → ℘1a = (℘1c ∪ {{x}})) |
100 | 99 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (a = (c ∪
{x}) → (℘1a ∈ n ↔ (℘1c ∪ {{x}})
∈ n)) |
101 | | pw1eq 4144 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (b = (d ∪
{y}) → ℘1b = ℘1(d ∪ {y})) |
102 | | pw1un 4164 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ℘1(d ∪ {y}) =
(℘1d ∪ ℘1{y}) |
103 | 57 | pw1sn 4166 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ℘1{y} = {{y}} |
104 | 103 | uneq2i 3416 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (℘1d ∪ ℘1{y}) = (℘1d ∪ {{y}}) |
105 | 102, 104 | eqtri 2373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℘1(d ∪ {y}) =
(℘1d ∪ {{y}}) |
106 | 101, 105 | syl6eq 2401 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (b = (d ∪
{y}) → ℘1b = (℘1d ∪ {{y}})) |
107 | 106 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (b = (d ∪
{y}) → (℘1b ∈ n ↔ (℘1d ∪ {{y}})
∈ n)) |
108 | 100, 107 | bi2anan9 843 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((a = (c ∪
{x}) ∧
b = (d
∪ {y})) → ((℘1a ∈ n ∧ ℘1b ∈ n) ↔ ((℘1c ∪ {{x}})
∈ n ∧ (℘1d ∪ {{y}})
∈ n))) |
109 | 108 | rexbidv 2636 |
. . . . . . . . . . . . . . . . . 18
⊢ ((a = (c ∪
{x}) ∧
b = (d
∪ {y})) → (∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) ↔ ∃n ∈ Nn ((℘1c ∪ {{x}})
∈ n ∧ (℘1d ∪ {{y}})
∈ n))) |
110 | 93, 109 | syl5ibrcom 213 |
. . . . . . . . . . . . . . . . 17
⊢ (((k ∈ Nn ∧ ∃n ∈ Nn (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ ((c ∈ k ∧ d ∈ k) ∧ (¬
x ∈
c ∧ ¬
y ∈
d))) → ((a = (c ∪
{x}) ∧
b = (d
∪ {y})) → ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
111 | 60, 110 | sylan2b 461 |
. . . . . . . . . . . . . . . 16
⊢ (((k ∈ Nn ∧ ∃n ∈ Nn (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ ((c ∈ k ∧ d ∈ k) ∧ (x ∈ ∼ c ∧ y ∈ ∼ d))) → ((a
= (c ∪ {x}) ∧ b = (d ∪
{y})) → ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
112 | 111 | expr 598 |
. . . . . . . . . . . . . . 15
⊢ (((k ∈ Nn ∧ ∃n ∈ Nn (℘1c ∈ n ∧ ℘1d ∈ n)) ∧ (c ∈ k ∧ d ∈ k)) → ((x
∈ ∼ c
∧ y ∈ ∼ d)
→ ((a = (c ∪ {x})
∧ b =
(d ∪ {y})) → ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)))) |
113 | 112 | anasss 628 |
. . . . . . . . . . . . . 14
⊢ ((k ∈ Nn ∧ (∃n ∈ Nn (℘1c ∈ n ∧ ℘1d ∈ n) ∧ (c ∈ k ∧ d ∈ k))) → ((x
∈ ∼ c
∧ y ∈ ∼ d)
→ ((a = (c ∪ {x})
∧ b =
(d ∪ {y})) → ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)))) |
114 | 113 | rexlimdvv 2745 |
. . . . . . . . . . . . 13
⊢ ((k ∈ Nn ∧ (∃n ∈ Nn (℘1c ∈ n ∧ ℘1d ∈ n) ∧ (c ∈ k ∧ d ∈ k))) → (∃x ∈ ∼ c∃y ∈ ∼ d(a = (c ∪ {x})
∧ b =
(d ∪ {y})) → ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
115 | 114 | exp32 588 |
. . . . . . . . . . . 12
⊢ (k ∈ Nn → (∃n ∈ Nn (℘1c ∈ n ∧ ℘1d ∈ n) → ((c
∈ k ∧ d ∈ k) →
(∃x
∈ ∼ c∃y ∈ ∼ d(a = (c ∪ {x})
∧ b =
(d ∪ {y})) → ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))))) |
116 | 54, 115 | sylan9r 639 |
. . . . . . . . . . 11
⊢ ((k ∈ Nn ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)) → ((c
∈ k ∧ d ∈ k) →
((c ∈
k ∧
d ∈
k) → (∃x ∈ ∼ c∃y ∈ ∼ d(a = (c ∪ {x})
∧ b =
(d ∪ {y})) → ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))))) |
117 | 116 | pm2.43d 44 |
. . . . . . . . . 10
⊢ ((k ∈ Nn ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)) → ((c
∈ k ∧ d ∈ k) →
(∃x
∈ ∼ c∃y ∈ ∼ d(a = (c ∪ {x})
∧ b =
(d ∪ {y})) → ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)))) |
118 | 117 | rexlimdvv 2745 |
. . . . . . . . 9
⊢ ((k ∈ Nn ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)) → (∃c ∈ k ∃d ∈ k ∃x ∈ ∼ c∃y ∈ ∼ d(a = (c ∪ {x})
∧ b =
(d ∪ {y})) → ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
119 | 44, 118 | syl5bi 208 |
. . . . . . . 8
⊢ ((k ∈ Nn ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)) → ((a
∈ (k
+c 1c) ∧
b ∈
(k +c
1c)) → ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
120 | 119 | exp3a 425 |
. . . . . . 7
⊢ ((k ∈ Nn ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)) → (a
∈ (k
+c 1c) → (b ∈ (k +c 1c) →
∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)))) |
121 | 36, 37, 120 | ralrimd 2703 |
. . . . . 6
⊢ ((k ∈ Nn ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)) → (a
∈ (k
+c 1c) → ∀b ∈ (k
+c 1c)∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
122 | 33, 121 | ralrimi 2696 |
. . . . 5
⊢ ((k ∈ Nn ∧ ∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)) → ∀a ∈ (k
+c 1c)∀b ∈ (k
+c 1c)∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)) |
123 | 122 | ex 423 |
. . . 4
⊢ (k ∈ Nn → (∀a ∈ k ∀b ∈ k ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) → ∀a ∈ (k
+c 1c)∀b ∈ (k
+c 1c)∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n))) |
124 | 1, 3, 5, 7, 9, 30,
123 | finds 4412 |
. . 3
⊢ (M ∈ Nn → ∀a ∈ M ∀b ∈ M ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n)) |
125 | | pw1eq 4144 |
. . . . . . 7
⊢ (a = A →
℘1a = ℘1A) |
126 | 125 | eleq1d 2419 |
. . . . . 6
⊢ (a = A →
(℘1a ∈ n ↔ ℘1A ∈ n)) |
127 | 126 | anbi1d 685 |
. . . . 5
⊢ (a = A →
((℘1a ∈ n ∧ ℘1b ∈ n) ↔ (℘1A ∈ n ∧ ℘1b ∈ n))) |
128 | 127 | rexbidv 2636 |
. . . 4
⊢ (a = A →
(∃n
∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) ↔ ∃n ∈ Nn (℘1A ∈ n ∧ ℘1b ∈ n))) |
129 | | pw1eq 4144 |
. . . . . . 7
⊢ (b = B →
℘1b = ℘1B) |
130 | 129 | eleq1d 2419 |
. . . . . 6
⊢ (b = B →
(℘1b ∈ n ↔ ℘1B ∈ n)) |
131 | 130 | anbi2d 684 |
. . . . 5
⊢ (b = B →
((℘1A ∈ n ∧ ℘1b ∈ n) ↔ (℘1A ∈ n ∧ ℘1B ∈ n))) |
132 | 131 | rexbidv 2636 |
. . . 4
⊢ (b = B →
(∃n
∈ Nn (℘1A ∈ n ∧ ℘1b ∈ n) ↔ ∃n ∈ Nn (℘1A ∈ n ∧ ℘1B ∈ n))) |
133 | 128, 132 | rspc2v 2962 |
. . 3
⊢ ((A ∈ M ∧ B ∈ M) → (∀a ∈ M ∀b ∈ M ∃n ∈ Nn (℘1a ∈ n ∧ ℘1b ∈ n) → ∃n ∈ Nn (℘1A ∈ n ∧ ℘1B ∈ n))) |
134 | 124, 133 | syl5com 26 |
. 2
⊢ (M ∈ Nn → ((A ∈ M ∧ B ∈ M) →
∃n ∈ Nn (℘1A ∈ n ∧ ℘1B ∈ n))) |
135 | 134 | 3impib 1149 |
1
⊢ ((M ∈ Nn ∧ A ∈ M ∧ B ∈ M) → ∃n ∈ Nn (℘1A ∈ n ∧ ℘1B ∈ n)) |