NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl9r GIF version

Theorem syl9r 67
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
syl9r.1 (φ → (ψχ))
syl9r.2 (θ → (χτ))
Assertion
Ref Expression
syl9r (θ → (φ → (ψτ)))

Proof of Theorem syl9r
StepHypRef Expression
1 syl9r.1 . . 3 (φ → (ψχ))
2 syl9r.2 . . 3 (θ → (χτ))
31, 2syl9 66 . 2 (φ → (θ → (ψτ)))
43com12 27 1 (θ → (φ → (ψτ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  sylan9r  639  19.23t  1800  nfimd  1808  spfinsfincl  4540  fununi  5161  funimass3  5405  weds  5939
  Copyright terms: Public domain W3C validator