Proof of Theorem weds
Step | Hyp | Ref
| Expression |
1 | | weds.1 |
. . 3
⊢ {x ∣ ψ} ∈
V |
2 | | weds.2 |
. . 3
⊢ (x = y →
(ψ ↔ χ)) |
3 | | weds.3 |
. . 3
⊢ (x = z →
(ψ ↔ θ)) |
4 | | weds.4 |
. . . 4
⊢ (φ → R We A) |
5 | | df-we 5907 |
. . . . . . 7
⊢ We = ( Or ∩ Fr ) |
6 | 5 | breqi 4646 |
. . . . . 6
⊢ (R We A ↔ R(
Or ∩ Fr )A) |
7 | | brin 4694 |
. . . . . 6
⊢ (R( Or ∩ Fr )A ↔
(R Or A ∧ R Fr A)) |
8 | 6, 7 | bitri 240 |
. . . . 5
⊢ (R We A ↔ (R
Or A ∧ R Fr A)) |
9 | 8 | simprbi 450 |
. . . 4
⊢ (R We A → R Fr A) |
10 | 4, 9 | syl 15 |
. . 3
⊢ (φ → R Fr A) |
11 | | weds.5 |
. . 3
⊢ (φ → ∃x ∈ A ψ) |
12 | 1, 2, 3, 10, 11 | frds 5936 |
. 2
⊢ (φ → ∃y ∈ A (χ ∧ ∀z ∈ A ((θ ∧
zRy) →
z = y))) |
13 | | impexp 433 |
. . . . . . 7
⊢ (((θ ∧
zRy) →
z = y)
↔ (θ → (zRy → z =
y))) |
14 | 8 | simplbi 446 |
. . . . . . . . . . . . 13
⊢ (R We A → R Or A) |
15 | 4, 14 | syl 15 |
. . . . . . . . . . . 12
⊢ (φ → R Or A) |
16 | | sopc 5935 |
. . . . . . . . . . . . 13
⊢ (R Or A ↔ (R
Po A ∧ R Connex A)) |
17 | 16 | simprbi 450 |
. . . . . . . . . . . 12
⊢ (R Or A → R Connex A) |
18 | 15, 17 | syl 15 |
. . . . . . . . . . 11
⊢ (φ → R Connex A) |
19 | 18 | adantr 451 |
. . . . . . . . . 10
⊢ ((φ ∧
(y ∈
A ∧
z ∈
A)) → R Connex A) |
20 | | simprl 732 |
. . . . . . . . . 10
⊢ ((φ ∧
(y ∈
A ∧
z ∈
A)) → y ∈ A) |
21 | | simprr 733 |
. . . . . . . . . 10
⊢ ((φ ∧
(y ∈
A ∧
z ∈
A)) → z ∈ A) |
22 | 19, 20, 21 | connexd 5932 |
. . . . . . . . 9
⊢ ((φ ∧
(y ∈
A ∧
z ∈
A)) → (yRz ∨ zRy)) |
23 | | ax1 1431 |
. . . . . . . . . . 11
⊢ (yRz → ((zRy → z =
y) → yRz)) |
24 | 23 | a1i 10 |
. . . . . . . . . 10
⊢ ((φ ∧
(y ∈
A ∧
z ∈
A)) → (yRz → ((zRy → z =
y) → yRz))) |
25 | | pm2.27 35 |
. . . . . . . . . . 11
⊢ (zRy → ((zRy → z =
y) → z = y)) |
26 | | porta 5934 |
. . . . . . . . . . . . . . . . . . 19
⊢ (R Po A ↔ (R
Ref A ∧ R Trans A ∧ R Antisym A)) |
27 | 26 | simp1bi 970 |
. . . . . . . . . . . . . . . . . 18
⊢ (R Po A → R Ref A) |
28 | 27 | adantr 451 |
. . . . . . . . . . . . . . . . 17
⊢ ((R Po A ∧ R Connex A) → R
Ref A) |
29 | 16, 28 | sylbi 187 |
. . . . . . . . . . . . . . . 16
⊢ (R Or A → R Ref A) |
30 | 15, 29 | syl 15 |
. . . . . . . . . . . . . . 15
⊢ (φ → R Ref A) |
31 | 30 | adantr 451 |
. . . . . . . . . . . . . 14
⊢ ((φ ∧ z ∈ A) → R
Ref A) |
32 | | simpr 447 |
. . . . . . . . . . . . . 14
⊢ ((φ ∧ z ∈ A) → z
∈ A) |
33 | 31, 32 | refd 5928 |
. . . . . . . . . . . . 13
⊢ ((φ ∧ z ∈ A) → zRz) |
34 | 33 | adantrl 696 |
. . . . . . . . . . . 12
⊢ ((φ ∧
(y ∈
A ∧
z ∈
A)) → zRz) |
35 | | breq1 4643 |
. . . . . . . . . . . 12
⊢ (z = y →
(zRz ↔
yRz)) |
36 | 34, 35 | syl5ibcom 211 |
. . . . . . . . . . 11
⊢ ((φ ∧
(y ∈
A ∧
z ∈
A)) → (z = y →
yRz)) |
37 | 25, 36 | syl9r 67 |
. . . . . . . . . 10
⊢ ((φ ∧
(y ∈
A ∧
z ∈
A)) → (zRy → ((zRy → z =
y) → yRz))) |
38 | 24, 37 | jaod 369 |
. . . . . . . . 9
⊢ ((φ ∧
(y ∈
A ∧
z ∈
A)) → ((yRz ∨ zRy) → ((zRy → z =
y) → yRz))) |
39 | 22, 38 | mpd 14 |
. . . . . . . 8
⊢ ((φ ∧
(y ∈
A ∧
z ∈
A)) → ((zRy → z =
y) → yRz)) |
40 | 39 | imim2d 48 |
. . . . . . 7
⊢ ((φ ∧
(y ∈
A ∧
z ∈
A)) → ((θ → (zRy → z =
y)) → (θ → yRz))) |
41 | 13, 40 | syl5bi 208 |
. . . . . 6
⊢ ((φ ∧
(y ∈
A ∧
z ∈
A)) → (((θ ∧
zRy) →
z = y)
→ (θ → yRz))) |
42 | 41 | anassrs 629 |
. . . . 5
⊢ (((φ ∧ y ∈ A) ∧ z ∈ A) → (((θ ∧
zRy) →
z = y)
→ (θ → yRz))) |
43 | 42 | ralimdva 2693 |
. . . 4
⊢ ((φ ∧ y ∈ A) → (∀z ∈ A ((θ ∧
zRy) →
z = y)
→ ∀z ∈ A (θ
→ yRz))) |
44 | 43 | anim2d 548 |
. . 3
⊢ ((φ ∧ y ∈ A) → ((χ ∧ ∀z ∈ A ((θ ∧
zRy) →
z = y))
→ (χ ∧ ∀z ∈ A (θ
→ yRz)))) |
45 | 44 | reximdva 2727 |
. 2
⊢ (φ → (∃y ∈ A (χ ∧ ∀z ∈ A ((θ ∧
zRy) →
z = y))
→ ∃y ∈ A (χ ∧ ∀z ∈ A (θ
→ yRz)))) |
46 | 12, 45 | mpd 14 |
1
⊢ (φ → ∃y ∈ A (χ ∧ ∀z ∈ A (θ → yRz))) |