| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > 19.23t | GIF version | ||
| Description: Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| 19.23t | ⊢ (Ⅎxψ → (∀x(φ → ψ) ↔ (∃xφ → ψ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exim 1575 | . . 3 ⊢ (∀x(φ → ψ) → (∃xφ → ∃xψ)) | |
| 2 | 19.9t 1779 | . . . 4 ⊢ (Ⅎxψ → (∃xψ ↔ ψ)) | |
| 3 | 2 | biimpd 198 | . . 3 ⊢ (Ⅎxψ → (∃xψ → ψ)) | 
| 4 | 1, 3 | syl9r 67 | . 2 ⊢ (Ⅎxψ → (∀x(φ → ψ) → (∃xφ → ψ))) | 
| 5 | nfr 1761 | . . . 4 ⊢ (Ⅎxψ → (ψ → ∀xψ)) | |
| 6 | 5 | imim2d 48 | . . 3 ⊢ (Ⅎxψ → ((∃xφ → ψ) → (∃xφ → ∀xψ))) | 
| 7 | 19.38 1794 | . . 3 ⊢ ((∃xφ → ∀xψ) → ∀x(φ → ψ)) | |
| 8 | 6, 7 | syl6 29 | . 2 ⊢ (Ⅎxψ → ((∃xφ → ψ) → ∀x(φ → ψ))) | 
| 9 | 4, 8 | impbid 183 | 1 ⊢ (Ⅎxψ → (∀x(φ → ψ) ↔ (∃xφ → ψ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 | 
| This theorem is referenced by: 19.23 1801 sbft 2025 axie2 2329 r19.23t 2729 ceqsalt 2882 vtoclgft 2906 sbciegft 3077 | 
| Copyright terms: Public domain | W3C validator |