NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylan9r GIF version

Theorem sylan9r 639
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
sylan9r.1 (φ → (ψχ))
sylan9r.2 (θ → (χτ))
Assertion
Ref Expression
sylan9r ((θ φ) → (ψτ))

Proof of Theorem sylan9r
StepHypRef Expression
1 sylan9r.1 . . 3 (φ → (ψχ))
2 sylan9r.2 . . 3 (θ → (χτ))
31, 2syl9r 67 . 2 (θ → (φ → (ψτ)))
43imp 418 1 ((θ φ) → (ψτ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  sbequi  2059  opkth1g  4131  ncfinraise  4482  funun  5147
  Copyright terms: Public domain W3C validator