| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sylan9r | GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sylan9r.1 | ⊢ (φ → (ψ → χ)) |
| sylan9r.2 | ⊢ (θ → (χ → τ)) |
| Ref | Expression |
|---|---|
| sylan9r | ⊢ ((θ ∧ φ) → (ψ → τ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9r.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
| 2 | sylan9r.2 | . . 3 ⊢ (θ → (χ → τ)) | |
| 3 | 1, 2 | syl9r 67 | . 2 ⊢ (θ → (φ → (ψ → τ))) |
| 4 | 3 | imp 418 | 1 ⊢ ((θ ∧ φ) → (ψ → τ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: sbequi 2059 opkth1g 4131 ncfinraise 4482 funun 5147 |
| Copyright terms: Public domain | W3C validator |