| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sylancbr | GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.) |
| Ref | Expression |
|---|---|
| sylancbr.1 | ⊢ (ψ ↔ φ) |
| sylancbr.2 | ⊢ (χ ↔ φ) |
| sylancbr.3 | ⊢ ((ψ ∧ χ) → θ) |
| Ref | Expression |
|---|---|
| sylancbr | ⊢ (φ → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylancbr.1 | . . 3 ⊢ (ψ ↔ φ) | |
| 2 | sylancbr.2 | . . 3 ⊢ (χ ↔ φ) | |
| 3 | sylancbr.3 | . . 3 ⊢ ((ψ ∧ χ) → θ) | |
| 4 | 1, 2, 3 | syl2anbr 466 | . 2 ⊢ ((φ ∧ φ) → θ) |
| 5 | 4 | anidms 626 | 1 ⊢ (φ → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |