New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylancbr | GIF version |
Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.) |
Ref | Expression |
---|---|
sylancbr.1 | ⊢ (ψ ↔ φ) |
sylancbr.2 | ⊢ (χ ↔ φ) |
sylancbr.3 | ⊢ ((ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
sylancbr | ⊢ (φ → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylancbr.1 | . . 3 ⊢ (ψ ↔ φ) | |
2 | sylancbr.2 | . . 3 ⊢ (χ ↔ φ) | |
3 | sylancbr.3 | . . 3 ⊢ ((ψ ∧ χ) → θ) | |
4 | 1, 2, 3 | syl2anbr 466 | . 2 ⊢ ((φ ∧ φ) → θ) |
5 | 4 | anidms 626 | 1 ⊢ (φ → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |