NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl2anbr GIF version

Theorem syl2anbr 466
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anbr.1 (ψφ)
syl2anbr.2 (χτ)
syl2anbr.3 ((ψ χ) → θ)
Assertion
Ref Expression
syl2anbr ((φ τ) → θ)

Proof of Theorem syl2anbr
StepHypRef Expression
1 syl2anbr.2 . 2 (χτ)
2 syl2anbr.1 . . 3 (ψφ)
3 syl2anbr.3 . . 3 ((ψ χ) → θ)
42, 3sylanbr 459 . 2 ((φ χ) → θ)
51, 4sylan2br 462 1 ((φ τ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  sylancbr  647  ov3  5600
  Copyright terms: Public domain W3C validator