| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > syl2anbr | GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anbr.1 | ⊢ (ψ ↔ φ) |
| syl2anbr.2 | ⊢ (χ ↔ τ) |
| syl2anbr.3 | ⊢ ((ψ ∧ χ) → θ) |
| Ref | Expression |
|---|---|
| syl2anbr | ⊢ ((φ ∧ τ) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anbr.2 | . 2 ⊢ (χ ↔ τ) | |
| 2 | syl2anbr.1 | . . 3 ⊢ (ψ ↔ φ) | |
| 3 | syl2anbr.3 | . . 3 ⊢ ((ψ ∧ χ) → θ) | |
| 4 | 2, 3 | sylanbr 459 | . 2 ⊢ ((φ ∧ χ) → θ) |
| 5 | 1, 4 | sylan2br 462 | 1 ⊢ ((φ ∧ τ) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: sylancbr 647 ov3 5600 |
| Copyright terms: Public domain | W3C validator |