NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anidms GIF version

Theorem anidms 626
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.)
Hypothesis
Ref Expression
anidms.1 ((φ φ) → ψ)
Assertion
Ref Expression
anidms (φψ)

Proof of Theorem anidms
StepHypRef Expression
1 anidms.1 . . 3 ((φ φ) → ψ)
21ex 423 . 2 (φ → (φψ))
32pm2.43i 43 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  sylancb  646  sylancbr  647  compleq  3244  dedth2v  3708  dedth3v  3709  dedth4v  3710  intsng  3962  complexg  4100  pw1exg  4303  ltfinirr  4458  lefinrflx  4468  0ceven  4506  evennn  4507  oddnn  4508  sucoddeven  4512  evenodddisj  4517  eventfin  4518  oddtfin  4519  nnpweq  4524  sfindbl  4531  sfintfin  4533  xpid11  4927  dfxp2  5114  brtxp  5784  elfix  5788  lecidg  6197  nncdiv3  6278  nnc3n3p1  6279  nnc3n3p2  6280  nnc3p1n3p2  6281  nchoicelem1  6290  nchoicelem2  6291
  Copyright terms: Public domain W3C validator