NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylancom GIF version

Theorem sylancom 648
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 2-Jul-2008.)
Hypotheses
Ref Expression
sylancom.1 ((φ ψ) → χ)
sylancom.2 ((χ ψ) → θ)
Assertion
Ref Expression
sylancom ((φ ψ) → θ)

Proof of Theorem sylancom
StepHypRef Expression
1 sylancom.1 . 2 ((φ ψ) → χ)
2 simpr 447 . 2 ((φ ψ) → ψ)
3 sylancom.2 . 2 ((χ ψ) → θ)
41, 2, 3syl2anc 642 1 ((φ ψ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  fimacnvdisj  5245
  Copyright terms: Public domain W3C validator