New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > tbwlem5 | GIF version |
Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tbwlem5 | ⊢ (((φ → (ψ → ⊥ )) → ⊥ ) → φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tbw-ax2 1466 | . . . 4 ⊢ (φ → (ψ → φ)) | |
2 | tbw-ax1 1465 | . . . 4 ⊢ ((ψ → φ) → ((φ → ⊥ ) → (ψ → ⊥ ))) | |
3 | 1, 2 | tbwsyl 1469 | . . 3 ⊢ (φ → ((φ → ⊥ ) → (ψ → ⊥ ))) |
4 | tbwlem1 1470 | . . 3 ⊢ ((φ → ((φ → ⊥ ) → (ψ → ⊥ ))) → ((φ → ⊥ ) → (φ → (ψ → ⊥ )))) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((φ → ⊥ ) → (φ → (ψ → ⊥ ))) |
6 | tbwlem4 1473 | . 2 ⊢ (((φ → ⊥ ) → (φ → (ψ → ⊥ ))) → (((φ → (ψ → ⊥ )) → ⊥ ) → φ)) | |
7 | 5, 6 | ax-mp 5 | 1 ⊢ (((φ → (ψ → ⊥ )) → ⊥ ) → φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥ wfal 1317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
This theorem is referenced by: re1luk3 1477 |
Copyright terms: Public domain | W3C validator |