Proof of Theorem tbwlem1
Step | Hyp | Ref
| Expression |
1 | | tbw-ax2 1466 |
. . . 4
⊢ (ψ → ((ψ → χ) → ψ)) |
2 | | tbw-ax1 1465 |
. . . 4
⊢ (((ψ → χ) → ψ) → ((ψ → χ) → ((ψ → χ) → χ))) |
3 | 1, 2 | tbwsyl 1469 |
. . 3
⊢ (ψ → ((ψ → χ) → ((ψ → χ) → χ))) |
4 | | tbw-ax1 1465 |
. . . 4
⊢ (((ψ → χ) → ((ψ → χ) → χ)) → ((((ψ → χ) → χ) → χ) → ((ψ → χ) → χ))) |
5 | | tbw-ax3 1467 |
. . . 4
⊢ (((((ψ → χ) → χ) → χ) → ((ψ → χ) → χ)) → ((ψ → χ) → χ)) |
6 | 4, 5 | tbwsyl 1469 |
. . 3
⊢ (((ψ → χ) → ((ψ → χ) → χ)) → ((ψ → χ) → χ)) |
7 | 3, 6 | tbwsyl 1469 |
. 2
⊢ (ψ → ((ψ → χ) → χ)) |
8 | | tbw-ax1 1465 |
. 2
⊢ ((φ → (ψ → χ)) → (((ψ → χ) → χ) → (φ → χ))) |
9 | | tbw-ax1 1465 |
. 2
⊢ ((ψ → ((ψ → χ) → χ)) → ((((ψ → χ) → χ) → (φ → χ)) → (ψ → (φ → χ)))) |
10 | 7, 8, 9 | mpsyl 59 |
1
⊢ ((φ → (ψ → χ)) → (ψ → (φ → χ))) |