QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  0i1 GIF version

Theorem 0i1 273
Description: Antecedent of 0 on Sasaki conditional. (Contributed by NM, 24-Dec-1998.)
Assertion
Ref Expression
0i1 (0 →1 a) = 1

Proof of Theorem 0i1
StepHypRef Expression
1 df-i1 44 . 2 (0 →1 a) = (0 ∪ (0 ∩ a))
2 ax-a2 31 . . 3 (0 ∪ (0 ∩ a)) = ((0 ∩ a) ∪ 0 )
3 df-f 42 . . . . 5 0 = 1
43con2 67 . . . 4 0 = 1
54lor 70 . . 3 ((0 ∩ a) ∪ 0 ) = ((0 ∩ a) ∪ 1)
62, 5ax-r2 36 . 2 (0 ∪ (0 ∩ a)) = ((0 ∩ a) ∪ 1)
7 or1 104 . 2 ((0 ∩ a) ∪ 1) = 1
81, 6, 73tr 65 1 (0 →1 a) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  1wt 8  0wf 9  1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a4 33  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-t 41  df-f 42  df-i1 44
This theorem is referenced by:  oa3-2lema  978  oa3-2to2s  990
  Copyright terms: Public domain W3C validator