Proof of Theorem oa3-2to2s
Step | Hyp | Ref
| Expression |
1 | | id 59 |
. . 3
(a →1 c)⊥ = (a →1 c)⊥ |
2 | | id 59 |
. . 3
(b →1 c)⊥ = (b →1 c)⊥ |
3 | | id 59 |
. . 3
(0 →1 c)⊥ = (0 →1
c)⊥ |
4 | | leo 158 |
. . . . 5
a⊥ ≤ (a⊥ ∪ (a ∩ c)) |
5 | | df-i1 44 |
. . . . . . 7
(a →1 c) = (a⊥ ∪ (a ∩ c)) |
6 | 5 | ax-r1 35 |
. . . . . 6
(a⊥ ∪ (a ∩ c)) =
(a →1 c) |
7 | | ax-a1 30 |
. . . . . 6
(a →1 c) = (a
→1 c)⊥
⊥ |
8 | 6, 7 | ax-r2 36 |
. . . . 5
(a⊥ ∪ (a ∩ c)) =
(a →1 c)⊥
⊥ |
9 | 4, 8 | lbtr 139 |
. . . 4
a⊥ ≤ (a →1 c)⊥
⊥ |
10 | | leo 158 |
. . . . 5
b⊥ ≤ (b⊥ ∪ (b ∩ c)) |
11 | | df-i1 44 |
. . . . . . 7
(b →1 c) = (b⊥ ∪ (b ∩ c)) |
12 | 11 | ax-r1 35 |
. . . . . 6
(b⊥ ∪ (b ∩ c)) =
(b →1 c) |
13 | | ax-a1 30 |
. . . . . 6
(b →1 c) = (b
→1 c)⊥
⊥ |
14 | 12, 13 | ax-r2 36 |
. . . . 5
(b⊥ ∪ (b ∩ c)) =
(b →1 c)⊥
⊥ |
15 | 10, 14 | lbtr 139 |
. . . 4
b⊥ ≤ (b →1 c)⊥
⊥ |
16 | | leo 158 |
. . . . 5
0⊥ ≤ (0⊥ ∪ (0 ∩ c)) |
17 | | df-i1 44 |
. . . . . . 7
(0 →1 c) =
(0⊥ ∪ (0 ∩ c)) |
18 | 17 | ax-r1 35 |
. . . . . 6
(0⊥ ∪ (0 ∩ c)) = (0 →1 c) |
19 | | ax-a1 30 |
. . . . . 6
(0 →1 c) = (0
→1 c)⊥
⊥ |
20 | 18, 19 | ax-r2 36 |
. . . . 5
(0⊥ ∪ (0 ∩ c)) = (0 →1 c)⊥
⊥ |
21 | 16, 20 | lbtr 139 |
. . . 4
0⊥ ≤ (0 →1 c)⊥
⊥ |
22 | | or0 102 |
. . . . . 6
(d ∪ 0) = d |
23 | 22 | ax-r1 35 |
. . . . 5
d = (d ∪ 0) |
24 | | oa3-2to2s.2 |
. . . . . . 7
d = ((a ∩ c) ∪
(b ∩ c)) |
25 | 5 | lan 77 |
. . . . . . . . . . 11
(a ∩ (a →1 c)) = (a ∩
(a⊥ ∪ (a ∩ c))) |
26 | | omla 447 |
. . . . . . . . . . 11
(a ∩ (a⊥ ∪ (a ∩ c))) =
(a ∩ c) |
27 | 25, 26 | ax-r2 36 |
. . . . . . . . . 10
(a ∩ (a →1 c)) = (a ∩
c) |
28 | 27 | ax-r1 35 |
. . . . . . . . 9
(a ∩ c) = (a ∩
(a →1 c)) |
29 | | ax-a1 30 |
. . . . . . . . . 10
a = a⊥
⊥ |
30 | 29, 7 | 2an 79 |
. . . . . . . . 9
(a ∩ (a →1 c)) = (a⊥ ⊥ ∩
(a →1 c)⊥ ⊥
) |
31 | 28, 30 | ax-r2 36 |
. . . . . . . 8
(a ∩ c) = (a⊥ ⊥ ∩
(a →1 c)⊥ ⊥
) |
32 | 11 | lan 77 |
. . . . . . . . . . 11
(b ∩ (b →1 c)) = (b ∩
(b⊥ ∪ (b ∩ c))) |
33 | | omla 447 |
. . . . . . . . . . 11
(b ∩ (b⊥ ∪ (b ∩ c))) =
(b ∩ c) |
34 | 32, 33 | ax-r2 36 |
. . . . . . . . . 10
(b ∩ (b →1 c)) = (b ∩
c) |
35 | 34 | ax-r1 35 |
. . . . . . . . 9
(b ∩ c) = (b ∩
(b →1 c)) |
36 | | ax-a1 30 |
. . . . . . . . . 10
b = b⊥
⊥ |
37 | 36, 13 | 2an 79 |
. . . . . . . . 9
(b ∩ (b →1 c)) = (b⊥ ⊥ ∩
(b →1 c)⊥ ⊥
) |
38 | 35, 37 | ax-r2 36 |
. . . . . . . 8
(b ∩ c) = (b⊥ ⊥ ∩
(b →1 c)⊥ ⊥
) |
39 | 31, 38 | 2or 72 |
. . . . . . 7
((a ∩ c) ∪ (b
∩ c)) = ((a⊥ ⊥ ∩
(a →1 c)⊥ ⊥ ) ∪
(b⊥ ⊥
∩ (b →1 c)⊥ ⊥
)) |
40 | 24, 39 | ax-r2 36 |
. . . . . 6
d = ((a⊥ ⊥ ∩
(a →1 c)⊥ ⊥ ) ∪
(b⊥ ⊥
∩ (b →1 c)⊥ ⊥
)) |
41 | | an1 106 |
. . . . . . . 8
(0 ∩ 1) = 0 |
42 | 41 | ax-r1 35 |
. . . . . . 7
0 = (0 ∩ 1) |
43 | | ax-a1 30 |
. . . . . . . 8
0 = 0⊥ ⊥ |
44 | | 0i1 273 |
. . . . . . . . . 10
(0 →1 c) =
1 |
45 | 44 | ax-r1 35 |
. . . . . . . . 9
1 = (0 →1 c) |
46 | 45, 19 | ax-r2 36 |
. . . . . . . 8
1 = (0 →1 c)⊥
⊥ |
47 | 43, 46 | 2an 79 |
. . . . . . 7
(0 ∩ 1) = (0⊥ ⊥ ∩ (0
→1 c)⊥
⊥ ) |
48 | 42, 47 | ax-r2 36 |
. . . . . 6
0 = (0⊥ ⊥ ∩ (0 →1
c)⊥
⊥ ) |
49 | 40, 48 | 2or 72 |
. . . . 5
(d ∪ 0) = (((a⊥ ⊥ ∩
(a →1 c)⊥ ⊥ ) ∪
(b⊥ ⊥
∩ (b →1 c)⊥ ⊥ )) ∪
(0⊥ ⊥ ∩ (0 →1 c)⊥ ⊥
)) |
50 | 23, 49 | ax-r2 36 |
. . . 4
d = (((a⊥ ⊥ ∩
(a →1 c)⊥ ⊥ ) ∪
(b⊥ ⊥
∩ (b →1 c)⊥ ⊥ )) ∪
(0⊥ ⊥ ∩ (0 →1 c)⊥ ⊥
)) |
51 | | oa3-2lema 978 |
. . . . 5
((a →1 d) ∩ (a
∪ (b ∩ (((a ∩ b) ∪
((a →1 d) ∩ (b
→1 d))) ∪ (((a ∩ 0) ∪ ((a →1 d) ∩ (0 →1 d))) ∩ ((b
∩ 0) ∪ ((b →1
d) ∩ (0 →1
d)))))))) = ((a →1 d) ∩ (a
∪ (b ∩ ((a ∩ b) ∪
((a →1 d) ∩ (b
→1 d)))))) |
52 | | oa3-2to2s.1 |
. . . . 5
((a →1 d) ∩ (a
∪ (b ∩ ((a ∩ b) ∪
((a →1 d) ∩ (b
→1 d)))))) ≤ d |
53 | 51, 52 | bltr 138 |
. . . 4
((a →1 d) ∩ (a
∪ (b ∩ (((a ∩ b) ∪
((a →1 d) ∩ (b
→1 d))) ∪ (((a ∩ 0) ∪ ((a →1 d) ∩ (0 →1 d))) ∩ ((b
∩ 0) ∪ ((b →1
d) ∩ (0 →1
d)))))))) ≤ d |
54 | 9, 15, 21, 50, 29, 36, 43, 53 | oa4to6 965 |
. . 3
(((a⊥ ∪
(a →1 c)⊥ ) ∩ (b⊥ ∪ (b →1 c)⊥ )) ∩ (0⊥
∪ (0 →1 c)⊥ )) ≤ ((a →1 c)⊥ ∪ (a⊥ ∩ (b⊥ ∪ (((a⊥ ∪ b⊥ ) ∩ ((a →1 c)⊥ ∪ (b →1 c)⊥ )) ∩ (((a⊥ ∪ 0⊥ )
∩ ((a →1 c)⊥ ∪ (0 →1
c)⊥ )) ∪
((b⊥ ∪
0⊥ ) ∩ ((b
→1 c)⊥
∪ (0 →1 c)⊥ ))))))) |
55 | 1, 2, 3, 54 | oa6to4 958 |
. 2
((a →1 c) ∩ (a
∪ (b ∩ (((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ 0) ∪ ((a →1 c) ∩ (0 →1 c))) ∩ ((b
∩ 0) ∪ ((b →1
c) ∩ (0 →1
c)))))))) ≤ (((a ∩ c) ∪
(b ∩ c)) ∪ (0 ∩ c)) |
56 | | oa3-2lema 978 |
. 2
((a →1 c) ∩ (a
∪ (b ∩ (((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ 0) ∪ ((a →1 c) ∩ (0 →1 c))) ∩ ((b
∩ 0) ∪ ((b →1
c) ∩ (0 →1
c)))))))) = ((a →1 c) ∩ (a
∪ (b ∩ ((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c)))))) |
57 | | ancom 74 |
. . . . 5
(0 ∩ c) = (c ∩ 0) |
58 | | an0 108 |
. . . . 5
(c ∩ 0) = 0 |
59 | 57, 58 | ax-r2 36 |
. . . 4
(0 ∩ c) = 0 |
60 | 59 | lor 70 |
. . 3
(((a ∩ c) ∪ (b
∩ c)) ∪ (0 ∩ c)) = (((a ∩
c) ∪ (b ∩ c))
∪ 0) |
61 | | or0 102 |
. . 3
(((a ∩ c) ∪ (b
∩ c)) ∪ 0) = ((a ∩ c) ∪
(b ∩ c)) |
62 | 60, 61 | ax-r2 36 |
. 2
(((a ∩ c) ∪ (b
∩ c)) ∪ (0 ∩ c)) = ((a ∩
c) ∪ (b ∩ c)) |
63 | 55, 56, 62 | le3tr2 141 |
1
((a →1 c) ∩ (a
∪ (b ∩ ((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c)))))) ≤ ((a ∩ c) ∪
(b ∩ c)) |