Proof of Theorem i5con
Step | Hyp | Ref
| Expression |
1 | | ancom 74 |
. . . 4
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
2 | | ax-a2 31 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b)) = ((a⊥ ∩ b) ∪ (a
∩ b)) |
3 | | ancom 74 |
. . . . . . 7
(a⊥ ∩ b) = (b ∩
a⊥ ) |
4 | | ax-a1 30 |
. . . . . . . 8
b = b⊥
⊥ |
5 | 4 | ran 78 |
. . . . . . 7
(b ∩ a⊥ ) = (b⊥ ⊥ ∩
a⊥ ) |
6 | 3, 5 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ b) = (b⊥ ⊥ ∩
a⊥ ) |
7 | | ancom 74 |
. . . . . . 7
(a ∩ b) = (b ∩
a) |
8 | | ax-a1 30 |
. . . . . . . 8
a = a⊥
⊥ |
9 | 4, 8 | 2an 79 |
. . . . . . 7
(b ∩ a) = (b⊥ ⊥ ∩
a⊥ ⊥
) |
10 | 7, 9 | ax-r2 36 |
. . . . . 6
(a ∩ b) = (b⊥ ⊥ ∩
a⊥ ⊥
) |
11 | 6, 10 | 2or 72 |
. . . . 5
((a⊥ ∩ b) ∪ (a
∩ b)) = ((b⊥ ⊥ ∩
a⊥ ) ∪ (b⊥ ⊥ ∩
a⊥ ⊥
)) |
12 | 2, 11 | ax-r2 36 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ b)) = ((b⊥ ⊥ ∩
a⊥ ) ∪ (b⊥ ⊥ ∩
a⊥ ⊥
)) |
13 | 1, 12 | 2or 72 |
. . 3
((a⊥ ∩ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) = ((b⊥ ∩ a⊥ ) ∪ ((b⊥ ⊥ ∩
a⊥ ) ∪ (b⊥ ⊥ ∩
a⊥ ⊥
))) |
14 | | ax-a2 31 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
15 | | ax-a3 32 |
. . 3
(((b⊥ ∩
a⊥ ) ∪ (b⊥ ⊥ ∩
a⊥ )) ∪ (b⊥ ⊥ ∩
a⊥ ⊥ )) =
((b⊥ ∩ a⊥ ) ∪ ((b⊥ ⊥ ∩
a⊥ ) ∪ (b⊥ ⊥ ∩
a⊥ ⊥
))) |
16 | 13, 14, 15 | 3tr1 63 |
. 2
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = (((b⊥ ∩ a⊥ ) ∪ (b⊥ ⊥ ∩
a⊥ )) ∪ (b⊥ ⊥ ∩
a⊥ ⊥
)) |
17 | | df-i5 48 |
. 2
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
18 | | df-i5 48 |
. 2
(b⊥ →5
a⊥ ) = (((b⊥ ∩ a⊥ ) ∪ (b⊥ ⊥ ∩
a⊥ )) ∪ (b⊥ ⊥ ∩
a⊥ ⊥
)) |
19 | 16, 17, 18 | 3tr1 63 |
1
(a →5 b) = (b⊥ →5 a⊥ ) |