Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > or1 | GIF version |
Description: Disjunction with 1. (Contributed by NM, 10-Aug-1997.) |
Ref | Expression |
---|---|
or1 | (a ∪ 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-t 41 | . . . 4 1 = (a ∪ a⊥ ) | |
2 | 1 | lor 70 | . . 3 (a ∪ 1) = (a ∪ (a ∪ a⊥ )) |
3 | ax-a4 33 | . . 3 (a ∪ (a ∪ a⊥ )) = (a ∪ a⊥ ) | |
4 | 2, 3 | ax-r2 36 | . 2 (a ∪ 1) = (a ∪ a⊥ ) |
5 | 1 | ax-r1 35 | . 2 (a ∪ a⊥ ) = 1 |
6 | 4, 5 | ax-r2 36 | 1 (a ∪ 1) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 1wt 8 |
This theorem was proved from axioms: ax-a2 31 ax-a4 33 ax-r1 35 ax-r2 36 ax-r5 38 |
This theorem depends on definitions: df-t 41 |
This theorem is referenced by: or1r 105 an0 108 le1 146 sklem 230 0i1 273 wle1 389 ska2 432 woml6 436 oml6 488 i3con 551 ud1lem3 562 ud3lem1c 568 ud3lem3 576 ud4lem1c 579 ud4lem1 581 ud4lem3b 584 ud5lem1 589 u1lemoa 620 u4lemoa 623 u2lemonb 636 u3lemonb 637 u4lem5 764 u4lem6 768 u1lem11 780 u3lem8 783 u3lem11 786 test 802 2oalem1 825 oa6v4v 933 lem3.3.7i0e1 1057 lem3.3.7i3e2 1067 |
Copyright terms: Public domain | W3C validator |