| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 1i1 | GIF version | ||
| Description: Antecedent of 1 on Sasaki conditional. (Contributed by NM, 24-Dec-1998.) |
| Ref | Expression |
|---|---|
| 1i1 | (1 →1 a) = a |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1 44 | . 2 (1 →1 a) = (1⊥ ∪ (1 ∩ a)) | |
| 2 | df-f 42 | . . . . 5 0 = 1⊥ | |
| 3 | 2 | ax-r1 35 | . . . 4 1⊥ = 0 |
| 4 | ancom 74 | . . . . 5 (1 ∩ a) = (a ∩ 1) | |
| 5 | an1 106 | . . . . 5 (a ∩ 1) = a | |
| 6 | 4, 5 | ax-r2 36 | . . . 4 (1 ∩ a) = a |
| 7 | 3, 6 | 2or 72 | . . 3 (1⊥ ∪ (1 ∩ a)) = (0 ∪ a) |
| 8 | ax-a2 31 | . . . 4 (0 ∪ a) = (a ∪ 0) | |
| 9 | or0 102 | . . . 4 (a ∪ 0) = a | |
| 10 | 8, 9 | ax-r2 36 | . . 3 (0 ∪ a) = a |
| 11 | 7, 10 | ax-r2 36 | . 2 (1⊥ ∪ (1 ∩ a)) = a |
| 12 | 1, 11 | ax-r2 36 | 1 (1 →1 a) = a |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 0wf 9 →1 wi1 12 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 |
| This theorem is referenced by: oa3-6lem 980 |
| Copyright terms: Public domain | W3C validator |