| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 3vth2 | GIF version | ||
| Description: A 3-variable theorem. Equivalent to OML. (Contributed by NM, 18-Oct-1998.) |
| Ref | Expression |
|---|---|
| 3vth2 | ((a →2 b) ∩ (b ∪ c)⊥ ) = ((a →2 c) ∩ (b ∪ c)⊥ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3vth1 804 | . . 3 ((a →2 b) ∩ (b ∪ c)⊥ ) ≤ (a →2 c) | |
| 2 | lear 161 | . . 3 ((a →2 b) ∩ (b ∪ c)⊥ ) ≤ (b ∪ c)⊥ | |
| 3 | 1, 2 | ler2an 173 | . 2 ((a →2 b) ∩ (b ∪ c)⊥ ) ≤ ((a →2 c) ∩ (b ∪ c)⊥ ) |
| 4 | ax-a2 31 | . . . . . 6 (b ∪ c) = (c ∪ b) | |
| 5 | 4 | ax-r4 37 | . . . . 5 (b ∪ c)⊥ = (c ∪ b)⊥ |
| 6 | 5 | lan 77 | . . . 4 ((a →2 c) ∩ (b ∪ c)⊥ ) = ((a →2 c) ∩ (c ∪ b)⊥ ) |
| 7 | 3vth1 804 | . . . 4 ((a →2 c) ∩ (c ∪ b)⊥ ) ≤ (a →2 b) | |
| 8 | 6, 7 | bltr 138 | . . 3 ((a →2 c) ∩ (b ∪ c)⊥ ) ≤ (a →2 b) |
| 9 | lear 161 | . . 3 ((a →2 c) ∩ (b ∪ c)⊥ ) ≤ (b ∪ c)⊥ | |
| 10 | 8, 9 | ler2an 173 | . 2 ((a →2 c) ∩ (b ∪ c)⊥ ) ≤ ((a →2 b) ∩ (b ∪ c)⊥ ) |
| 11 | 3, 10 | lebi 145 | 1 ((a →2 b) ∩ (b ∪ c)⊥ ) = ((a →2 c) ∩ (b ∪ c)⊥ ) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 |
| This theorem is referenced by: 3vth4 807 |
| Copyright terms: Public domain | W3C validator |