Proof of Theorem 3vth4
Step | Hyp | Ref
| Expression |
1 | | 3vth2 805 |
. . . 4
((a →2 b) ∩ (b
∪ c)⊥ ) = ((a →2 c) ∩ (b
∪ c)⊥
) |
2 | | ax-a1 30 |
. . . . 5
(a →2 b) = (a
→2 b)⊥
⊥ |
3 | 2 | ran 78 |
. . . 4
((a →2 b) ∩ (b
∪ c)⊥ ) = ((a →2 b)⊥ ⊥ ∩
(b ∪ c)⊥ ) |
4 | | ax-a1 30 |
. . . . 5
(a →2 c) = (a
→2 c)⊥
⊥ |
5 | 4 | ran 78 |
. . . 4
((a →2 c) ∩ (b
∪ c)⊥ ) = ((a →2 c)⊥ ⊥ ∩
(b ∪ c)⊥ ) |
6 | 1, 3, 5 | 3tr2 64 |
. . 3
((a →2 b)⊥ ⊥ ∩
(b ∪ c)⊥ ) = ((a →2 c)⊥ ⊥ ∩
(b ∪ c)⊥ ) |
7 | 6 | lor 70 |
. 2
((b ∪ c) ∪ ((a
→2 b)⊥
⊥ ∩ (b ∪ c)⊥ )) = ((b ∪ c) ∪
((a →2 c)⊥ ⊥ ∩
(b ∪ c)⊥ )) |
8 | | df-i2 45 |
. 2
((a →2 b)⊥ →2 (b ∪ c)) =
((b ∪ c) ∪ ((a
→2 b)⊥
⊥ ∩ (b ∪ c)⊥ )) |
9 | | df-i2 45 |
. 2
((a →2 c)⊥ →2 (b ∪ c)) =
((b ∪ c) ∪ ((a
→2 c)⊥
⊥ ∩ (b ∪ c)⊥ )) |
10 | 7, 8, 9 | 3tr1 63 |
1
((a →2 b)⊥ →2 (b ∪ c)) =
((a →2 c)⊥ →2 (b ∪ c)) |