QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  3vth4 GIF version

Theorem 3vth4 807
Description: A 3-variable theorem. (Contributed by NM, 18-Oct-1998.)
Assertion
Ref Expression
3vth4 ((a2 b)2 (bc)) = ((a2 c)2 (bc))

Proof of Theorem 3vth4
StepHypRef Expression
1 3vth2 805 . . . 4 ((a2 b) ∩ (bc) ) = ((a2 c) ∩ (bc) )
2 ax-a1 30 . . . . 5 (a2 b) = (a2 b)
32ran 78 . . . 4 ((a2 b) ∩ (bc) ) = ((a2 b) ∩ (bc) )
4 ax-a1 30 . . . . 5 (a2 c) = (a2 c)
54ran 78 . . . 4 ((a2 c) ∩ (bc) ) = ((a2 c) ∩ (bc) )
61, 3, 53tr2 64 . . 3 ((a2 b) ∩ (bc) ) = ((a2 c) ∩ (bc) )
76lor 70 . 2 ((bc) ∪ ((a2 b) ∩ (bc) )) = ((bc) ∪ ((a2 c) ∩ (bc) ))
8 df-i2 45 . 2 ((a2 b)2 (bc)) = ((bc) ∪ ((a2 b) ∩ (bc) ))
9 df-i2 45 . 2 ((a2 c)2 (bc)) = ((bc) ∪ ((a2 c) ∩ (bc) ))
107, 8, 93tr1 63 1 ((a2 b)2 (bc)) = ((a2 c)2 (bc))
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i2 45  df-le1 130  df-le2 131
This theorem is referenced by:  3vth6  809
  Copyright terms: Public domain W3C validator