Proof of Theorem 3vth1
Step | Hyp | Ref
| Expression |
1 | | anor3 90 |
. . . . . . 7
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
2 | 1 | lan 77 |
. . . . . 6
((b ∪ (b⊥ ∩ a⊥ )) ∩ (b⊥ ∩ c⊥ )) = ((b ∪ (b⊥ ∩ a⊥ )) ∩ (b ∪ c)⊥ ) |
3 | 2 | ax-r1 35 |
. . . . 5
((b ∪ (b⊥ ∩ a⊥ )) ∩ (b ∪ c)⊥ ) = ((b ∪ (b⊥ ∩ a⊥ )) ∩ (b⊥ ∩ c⊥ )) |
4 | | anass 76 |
. . . . . 6
(((b ∪ (b⊥ ∩ a⊥ )) ∩ b⊥ ) ∩ c⊥ ) = ((b ∪ (b⊥ ∩ a⊥ )) ∩ (b⊥ ∩ c⊥ )) |
5 | 4 | ax-r1 35 |
. . . . 5
((b ∪ (b⊥ ∩ a⊥ )) ∩ (b⊥ ∩ c⊥ )) = (((b ∪ (b⊥ ∩ a⊥ )) ∩ b⊥ ) ∩ c⊥ ) |
6 | 3, 5 | ax-r2 36 |
. . . 4
((b ∪ (b⊥ ∩ a⊥ )) ∩ (b ∪ c)⊥ ) = (((b ∪ (b⊥ ∩ a⊥ )) ∩ b⊥ ) ∩ c⊥ ) |
7 | | ancom 74 |
. . . . . . 7
((b ∪ (b⊥ ∩ a⊥ )) ∩ b⊥ ) = (b⊥ ∩ (b ∪ (b⊥ ∩ a⊥ ))) |
8 | | omlan 448 |
. . . . . . 7
(b⊥ ∩ (b ∪ (b⊥ ∩ a⊥ ))) = (b⊥ ∩ a⊥ ) |
9 | 7, 8 | ax-r2 36 |
. . . . . 6
((b ∪ (b⊥ ∩ a⊥ )) ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
10 | | lear 161 |
. . . . . 6
(b⊥ ∩ a⊥ ) ≤ a⊥ |
11 | 9, 10 | bltr 138 |
. . . . 5
((b ∪ (b⊥ ∩ a⊥ )) ∩ b⊥ ) ≤ a⊥ |
12 | 11 | leran 153 |
. . . 4
(((b ∪ (b⊥ ∩ a⊥ )) ∩ b⊥ ) ∩ c⊥ ) ≤ (a⊥ ∩ c⊥ ) |
13 | 6, 12 | bltr 138 |
. . 3
((b ∪ (b⊥ ∩ a⊥ )) ∩ (b ∪ c)⊥ ) ≤ (a⊥ ∩ c⊥ ) |
14 | | leor 159 |
. . 3
(a⊥ ∩ c⊥ ) ≤ (c ∪ (a⊥ ∩ c⊥ )) |
15 | 13, 14 | letr 137 |
. 2
((b ∪ (b⊥ ∩ a⊥ )) ∩ (b ∪ c)⊥ ) ≤ (c ∪ (a⊥ ∩ c⊥ )) |
16 | | df-i2 45 |
. . . 4
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
17 | | ancom 74 |
. . . . 5
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
18 | 17 | lor 70 |
. . . 4
(b ∪ (a⊥ ∩ b⊥ )) = (b ∪ (b⊥ ∩ a⊥ )) |
19 | 16, 18 | ax-r2 36 |
. . 3
(a →2 b) = (b ∪
(b⊥ ∩ a⊥ )) |
20 | 19 | ran 78 |
. 2
((a →2 b) ∩ (b
∪ c)⊥ ) = ((b ∪ (b⊥ ∩ a⊥ )) ∩ (b ∪ c)⊥ ) |
21 | | df-i2 45 |
. 2
(a →2 c) = (c ∪
(a⊥ ∩ c⊥ )) |
22 | 15, 20, 21 | le3tr1 140 |
1
((a →2 b) ∩ (b
∪ c)⊥ ) ≤ (a →2 c) |