Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > bina2 | GIF version |
Description: Pavicic binary logic ax-a2 analog. (Contributed by NM, 5-Nov-1997.) |
Ref | Expression |
---|---|
bina2 | (a⊥ ⊥ →3 a) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i3id 251 | . 2 (a →3 a) = 1 | |
2 | ax-a1 30 | . . . 4 a = a⊥ ⊥ | |
3 | 2 | ri3 253 | . . 3 (a →3 a) = (a⊥ ⊥ →3 a) |
4 | 3 | bi1 118 | . 2 ((a →3 a) ≡ (a⊥ ⊥ →3 a)) = 1 |
5 | 1, 4 | wwbmp 205 | 1 (a⊥ ⊥ →3 a) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 1wt 8 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |