QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  bina2 GIF version

Theorem bina2 283
Description: Pavicic binary logic ax-a2 analog. (Contributed by NM, 5-Nov-1997.)
Assertion
Ref Expression
bina2 (a 3 a) = 1

Proof of Theorem bina2
StepHypRef Expression
1 i3id 251 . 2 (a3 a) = 1
2 ax-a1 30 . . . 4 a = a
32ri3 253 . . 3 (a3 a) = (a 3 a)
43bi1 118 . 2 ((a3 a) ≡ (a 3 a)) = 1
51, 4wwbmp 205 1 (a 3 a) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  1wt 8  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i3 46
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator