Proof of Theorem i3id
Step | Hyp | Ref
| Expression |
1 | | ancom 74 |
. . . . . . . 8
(a⊥ ∩ a) = (a ∩
a⊥ ) |
2 | | dff 101 |
. . . . . . . . 9
0 = (a ∩ a⊥ ) |
3 | 2 | ax-r1 35 |
. . . . . . . 8
(a ∩ a⊥ ) = 0 |
4 | 1, 3 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩ a) = 0 |
5 | | anidm 111 |
. . . . . . 7
(a⊥ ∩ a⊥ ) = a⊥ |
6 | 4, 5 | 2or 72 |
. . . . . 6
((a⊥ ∩ a) ∪ (a⊥ ∩ a⊥ )) = (0 ∪ a⊥ ) |
7 | | ax-a2 31 |
. . . . . 6
(0 ∪ a⊥ ) =
(a⊥ ∪
0) |
8 | 6, 7 | ax-r2 36 |
. . . . 5
((a⊥ ∩ a) ∪ (a⊥ ∩ a⊥ )) = (a⊥ ∪ 0) |
9 | | or0 102 |
. . . . 5
(a⊥ ∪ 0) =
a⊥ |
10 | 8, 9 | ax-r2 36 |
. . . 4
((a⊥ ∩ a) ∪ (a⊥ ∩ a⊥ )) = a⊥ |
11 | | ax-a2 31 |
. . . . . . 7
(a⊥ ∪ a) = (a ∪
a⊥ ) |
12 | | df-t 41 |
. . . . . . . 8
1 = (a ∪ a⊥ ) |
13 | 12 | ax-r1 35 |
. . . . . . 7
(a ∪ a⊥ ) = 1 |
14 | 11, 13 | ax-r2 36 |
. . . . . 6
(a⊥ ∪ a) = 1 |
15 | 14 | lan 77 |
. . . . 5
(a ∩ (a⊥ ∪ a)) = (a ∩
1) |
16 | | an1 106 |
. . . . 5
(a ∩ 1) = a |
17 | 15, 16 | ax-r2 36 |
. . . 4
(a ∩ (a⊥ ∪ a)) = a |
18 | 10, 17 | 2or 72 |
. . 3
(((a⊥ ∩
a) ∪ (a⊥ ∩ a⊥ )) ∪ (a ∩ (a⊥ ∪ a))) = (a⊥ ∪ a) |
19 | 18, 11 | ax-r2 36 |
. 2
(((a⊥ ∩
a) ∪ (a⊥ ∩ a⊥ )) ∪ (a ∩ (a⊥ ∪ a))) = (a ∪
a⊥ ) |
20 | | df-i3 46 |
. 2
(a →3 a) = (((a⊥ ∩ a) ∪ (a⊥ ∩ a⊥ )) ∪ (a ∩ (a⊥ ∪ a))) |
21 | 19, 20, 12 | 3tr1 63 |
1
(a →3 a) = 1 |