| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ri3 | GIF version | ||
| Description: Introduce Kalmbach implication to the right. (Contributed by NM, 2-Nov-1997.) |
| Ref | Expression |
|---|---|
| ri3.1 | a = b |
| Ref | Expression |
|---|---|
| ri3 | (a →3 c) = (b →3 c) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ri3.1 | . . . . . 6 a = b | |
| 2 | 1 | ax-r4 37 | . . . . 5 a⊥ = b⊥ |
| 3 | 2 | ran 78 | . . . 4 (a⊥ ∩ c) = (b⊥ ∩ c) |
| 4 | 2 | ran 78 | . . . 4 (a⊥ ∩ c⊥ ) = (b⊥ ∩ c⊥ ) |
| 5 | 3, 4 | 2or 72 | . . 3 ((a⊥ ∩ c) ∪ (a⊥ ∩ c⊥ )) = ((b⊥ ∩ c) ∪ (b⊥ ∩ c⊥ )) |
| 6 | 2 | ax-r5 38 | . . . 4 (a⊥ ∪ c) = (b⊥ ∪ c) |
| 7 | 1, 6 | 2an 79 | . . 3 (a ∩ (a⊥ ∪ c)) = (b ∩ (b⊥ ∪ c)) |
| 8 | 5, 7 | 2or 72 | . 2 (((a⊥ ∩ c) ∪ (a⊥ ∩ c⊥ )) ∪ (a ∩ (a⊥ ∪ c))) = (((b⊥ ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ (b ∩ (b⊥ ∪ c))) |
| 9 | df-i3 46 | . 2 (a →3 c) = (((a⊥ ∩ c) ∪ (a⊥ ∩ c⊥ )) ∪ (a ∩ (a⊥ ∪ c))) | |
| 10 | df-i3 46 | . 2 (b →3 c) = (((b⊥ ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ (b ∩ (b⊥ ∪ c))) | |
| 11 | 8, 9, 10 | 3tr1 63 | 1 (a →3 c) = (b →3 c) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →3 wi3 14 |
| This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i3 46 |
| This theorem is referenced by: 2i3 254 ud3lem0b 261 bina2 283 ska14 514 i3orcom 525 i3ancom 526 bi3tr 527 i3ri3 538 |
| Copyright terms: Public domain | W3C validator |