Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > cancel | GIF version |
Description: Cancellation law eliminating →1 consequent. (Contributed by NM, 21-Feb-2002.) |
Ref | Expression |
---|---|
cancel.1 | ((d ∪ (a →1 c)) →1 c) = ((d ∪ (b →1 c)) →1 c) |
Ref | Expression |
---|---|
cancel | (d ∪ (a →1 c)) = (d ∪ (b →1 c)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cancel.1 | . . 3 ((d ∪ (a →1 c)) →1 c) = ((d ∪ (b →1 c)) →1 c) | |
2 | 1 | cancellem 891 | . 2 (d ∪ (a →1 c)) ≤ (d ∪ (b →1 c)) |
3 | 1 | ax-r1 35 | . . 3 ((d ∪ (b →1 c)) →1 c) = ((d ∪ (a →1 c)) →1 c) |
4 | 3 | cancellem 891 | . 2 (d ∪ (b →1 c)) ≤ (d ∪ (a →1 c)) |
5 | 2, 4 | lebi 145 | 1 (d ∪ (a →1 c)) = (d ∪ (b →1 c)) |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |