Proof of Theorem kb10iii
Step | Hyp | Ref
| Expression |
1 | | ud1lem0c 277 |
. . 3
(a →1 b)⊥ = (a ∩ (a⊥ ∪ b⊥ )) |
2 | | omln 446 |
. . . . . . . 8
(a⊥ ∪ (a ∩ (a⊥ ∪ b⊥ ))) = (a⊥ ∪ b⊥ ) |
3 | | u1lem9b 778 |
. . . . . . . . 9
a⊥ ≤ (a →1 c) |
4 | | kb10iii.1 |
. . . . . . . . 9
b⊥ ≤ (a →1 c) |
5 | 3, 4 | lel2or 170 |
. . . . . . . 8
(a⊥ ∪ b⊥ ) ≤ (a →1 c) |
6 | 2, 5 | bltr 138 |
. . . . . . 7
(a⊥ ∪ (a ∩ (a⊥ ∪ b⊥ ))) ≤ (a →1 c) |
7 | 6 | lelan 167 |
. . . . . 6
(a ∩ (a⊥ ∪ (a ∩ (a⊥ ∪ b⊥ )))) ≤ (a ∩ (a
→1 c)) |
8 | | ancom 74 |
. . . . . 6
(a ∩ (a →1 c)) = ((a
→1 c) ∩ a) |
9 | 7, 8 | lbtr 139 |
. . . . 5
(a ∩ (a⊥ ∪ (a ∩ (a⊥ ∪ b⊥ )))) ≤ ((a →1 c) ∩ a) |
10 | | womaon 221 |
. . . . 5
(a ∩ (a⊥ ∪ (a ∩ (a⊥ ∪ b⊥ )))) = (a ∩ (a⊥ ∪ b⊥ )) |
11 | | u1lemaa 600 |
. . . . 5
((a →1 c) ∩ a) =
(a ∩ c) |
12 | 9, 10, 11 | le3tr2 141 |
. . . 4
(a ∩ (a⊥ ∪ b⊥ )) ≤ (a ∩ c) |
13 | | lear 161 |
. . . 4
(a ∩ c) ≤ c |
14 | 12, 13 | letr 137 |
. . 3
(a ∩ (a⊥ ∪ b⊥ )) ≤ c |
15 | 1, 14 | bltr 138 |
. 2
(a →1 b)⊥ ≤ c |
16 | 15 | lecon2 156 |
1
c⊥ ≤ (a →1 b) |