Proof of Theorem cancellem
Step | Hyp | Ref
| Expression |
1 | | i1abs 801 |
. . 3
(((d ∪ (a →1 c)) →1 c)⊥ ∪ ((d ∪ (a
→1 c)) ∩ c)) = (d ∪
(a →1 c)) |
2 | 1 | ax-r1 35 |
. 2
(d ∪ (a →1 c)) = (((d ∪
(a →1 c)) →1 c)⊥ ∪ ((d ∪ (a
→1 c)) ∩ c)) |
3 | | leo 158 |
. . . . 5
(d ∪ (b →1 c))⊥ ≤ ((d ∪ (b
→1 c))⊥
∪ ((d ∪ (b →1 c)) ∩ c)) |
4 | | cancel.1 |
. . . . . . 7
((d ∪ (a →1 c)) →1 c) = ((d ∪
(b →1 c)) →1 c) |
5 | | df-i1 44 |
. . . . . . 7
((d ∪ (b →1 c)) →1 c) = ((d ∪
(b →1 c))⊥ ∪ ((d ∪ (b
→1 c)) ∩ c)) |
6 | 4, 5 | ax-r2 36 |
. . . . . 6
((d ∪ (a →1 c)) →1 c) = ((d ∪
(b →1 c))⊥ ∪ ((d ∪ (b
→1 c)) ∩ c)) |
7 | 6 | ax-r1 35 |
. . . . 5
((d ∪ (b →1 c))⊥ ∪ ((d ∪ (b
→1 c)) ∩ c)) = ((d ∪
(a →1 c)) →1 c) |
8 | 3, 7 | lbtr 139 |
. . . 4
(d ∪ (b →1 c))⊥ ≤ ((d ∪ (a
→1 c)) →1
c) |
9 | 8 | lecon2 156 |
. . 3
((d ∪ (a →1 c)) →1 c)⊥ ≤ (d ∪ (b
→1 c)) |
10 | | leor 159 |
. . . . . 6
((d ∪ (a →1 c)) ∩ c)
≤ ((d ∪ (a →1 c))⊥ ∪ ((d ∪ (a
→1 c)) ∩ c)) |
11 | | df-i1 44 |
. . . . . . . 8
((d ∪ (a →1 c)) →1 c) = ((d ∪
(a →1 c))⊥ ∪ ((d ∪ (a
→1 c)) ∩ c)) |
12 | 11 | ax-r1 35 |
. . . . . . 7
((d ∪ (a →1 c))⊥ ∪ ((d ∪ (a
→1 c)) ∩ c)) = ((d ∪
(a →1 c)) →1 c) |
13 | 12, 4 | ax-r2 36 |
. . . . . 6
((d ∪ (a →1 c))⊥ ∪ ((d ∪ (a
→1 c)) ∩ c)) = ((d ∪
(b →1 c)) →1 c) |
14 | 10, 13 | lbtr 139 |
. . . . 5
((d ∪ (a →1 c)) ∩ c)
≤ ((d ∪ (b →1 c)) →1 c) |
15 | | lear 161 |
. . . . 5
((d ∪ (a →1 c)) ∩ c)
≤ c |
16 | 14, 15 | ler2an 173 |
. . . 4
((d ∪ (a →1 c)) ∩ c)
≤ (((d ∪ (b →1 c)) →1 c) ∩ c) |
17 | | coman2 186 |
. . . . . . 7
((d ∪ (b →1 c)) ∩ c)
C c |
18 | | coman1 185 |
. . . . . . . 8
((d ∪ (b →1 c)) ∩ c)
C (d ∪ (b →1 c)) |
19 | 18 | comcom2 183 |
. . . . . . 7
((d ∪ (b →1 c)) ∩ c)
C (d ∪ (b →1 c))⊥ |
20 | 17, 19 | fh2rc 480 |
. . . . . 6
(((d ∪ (b →1 c))⊥ ∪ ((d ∪ (b
→1 c)) ∩ c)) ∩ c) =
(((d ∪ (b →1 c))⊥ ∩ c) ∪ (((d
∪ (b →1 c)) ∩ c)
∩ c)) |
21 | 5 | ran 78 |
. . . . . 6
(((d ∪ (b →1 c)) →1 c) ∩ c) =
(((d ∪ (b →1 c))⊥ ∪ ((d ∪ (b
→1 c)) ∩ c)) ∩ c) |
22 | | id 59 |
. . . . . 6
(((d ∪ (b →1 c))⊥ ∩ c) ∪ (((d
∪ (b →1 c)) ∩ c)
∩ c)) = (((d ∪ (b
→1 c))⊥
∩ c) ∪ (((d ∪ (b
→1 c)) ∩ c) ∩ c)) |
23 | 20, 21, 22 | 3tr1 63 |
. . . . 5
(((d ∪ (b →1 c)) →1 c) ∩ c) =
(((d ∪ (b →1 c))⊥ ∩ c) ∪ (((d
∪ (b →1 c)) ∩ c)
∩ c)) |
24 | | leao4 165 |
. . . . . . . 8
((d⊥ ∩
(b ∩ c)⊥ ) ∩ (b ∩ c)) ≤
(b⊥ ∪ (b ∩ c)) |
25 | 24 | lerr 150 |
. . . . . . 7
((d⊥ ∩
(b ∩ c)⊥ ) ∩ (b ∩ c)) ≤
(d ∪ (b⊥ ∪ (b ∩ c))) |
26 | | df-i1 44 |
. . . . . . . . . . . 12
(b →1 c) = (b⊥ ∪ (b ∩ c)) |
27 | 26 | lor 70 |
. . . . . . . . . . 11
(d ∪ (b →1 c)) = (d ∪
(b⊥ ∪ (b ∩ c))) |
28 | 27 | ax-r4 37 |
. . . . . . . . . 10
(d ∪ (b →1 c))⊥ = (d ∪ (b⊥ ∪ (b ∩ c)))⊥ |
29 | | an12 81 |
. . . . . . . . . . . 12
(b ∩ (d⊥ ∩ (b ∩ c)⊥ )) = (d⊥ ∩ (b ∩ (b ∩
c)⊥ )) |
30 | | anor1 88 |
. . . . . . . . . . . . 13
(b ∩ (b ∩ c)⊥ ) = (b⊥ ∪ (b ∩ c))⊥ |
31 | 30 | lan 77 |
. . . . . . . . . . . 12
(d⊥ ∩ (b ∩ (b ∩
c)⊥ )) = (d⊥ ∩ (b⊥ ∪ (b ∩ c))⊥ ) |
32 | | anor3 90 |
. . . . . . . . . . . 12
(d⊥ ∩ (b⊥ ∪ (b ∩ c))⊥ ) = (d ∪ (b⊥ ∪ (b ∩ c)))⊥ |
33 | 29, 31, 32 | 3tr 65 |
. . . . . . . . . . 11
(b ∩ (d⊥ ∩ (b ∩ c)⊥ )) = (d ∪ (b⊥ ∪ (b ∩ c)))⊥ |
34 | 33 | ax-r1 35 |
. . . . . . . . . 10
(d ∪ (b⊥ ∪ (b ∩ c)))⊥ = (b ∩ (d⊥ ∩ (b ∩ c)⊥ )) |
35 | | ancom 74 |
. . . . . . . . . 10
(b ∩ (d⊥ ∩ (b ∩ c)⊥ )) = ((d⊥ ∩ (b ∩ c)⊥ ) ∩ b) |
36 | 28, 34, 35 | 3tr 65 |
. . . . . . . . 9
(d ∪ (b →1 c))⊥ = ((d⊥ ∩ (b ∩ c)⊥ ) ∩ b) |
37 | 36 | ran 78 |
. . . . . . . 8
((d ∪ (b →1 c))⊥ ∩ c) = (((d⊥ ∩ (b ∩ c)⊥ ) ∩ b) ∩ c) |
38 | | anass 76 |
. . . . . . . 8
(((d⊥ ∩
(b ∩ c)⊥ ) ∩ b) ∩ c) =
((d⊥ ∩ (b ∩ c)⊥ ) ∩ (b ∩ c)) |
39 | 37, 38 | ax-r2 36 |
. . . . . . 7
((d ∪ (b →1 c))⊥ ∩ c) = ((d⊥ ∩ (b ∩ c)⊥ ) ∩ (b ∩ c)) |
40 | 25, 39, 27 | le3tr1 140 |
. . . . . 6
((d ∪ (b →1 c))⊥ ∩ c) ≤ (d ∪
(b →1 c)) |
41 | | lea 160 |
. . . . . . 7
((d ∪ (b →1 c)) ∩ c)
≤ (d ∪ (b →1 c)) |
42 | 41 | lel 151 |
. . . . . 6
(((d ∪ (b →1 c)) ∩ c)
∩ c) ≤ (d ∪ (b
→1 c)) |
43 | 40, 42 | lel2or 170 |
. . . . 5
(((d ∪ (b →1 c))⊥ ∩ c) ∪ (((d
∪ (b →1 c)) ∩ c)
∩ c)) ≤ (d ∪ (b
→1 c)) |
44 | 23, 43 | bltr 138 |
. . . 4
(((d ∪ (b →1 c)) →1 c) ∩ c) ≤
(d ∪ (b →1 c)) |
45 | 16, 44 | letr 137 |
. . 3
((d ∪ (a →1 c)) ∩ c)
≤ (d ∪ (b →1 c)) |
46 | 9, 45 | lel2or 170 |
. 2
(((d ∪ (a →1 c)) →1 c)⊥ ∪ ((d ∪ (a
→1 c)) ∩ c)) ≤ (d
∪ (b →1 c)) |
47 | 2, 46 | bltr 138 |
1
(d ∪ (a →1 c)) ≤ (d
∪ (b →1 c)) |