Proof of Theorem cmtrcom
Step | Hyp | Ref
| Expression |
1 | | ancom 74 |
. . . . 5
(a ∩ b) = (b ∩
a) |
2 | | ancom 74 |
. . . . 5
(a ∩ b⊥ ) = (b⊥ ∩ a) |
3 | 1, 2 | 2or 72 |
. . . 4
((a ∩ b) ∪ (a
∩ b⊥ )) = ((b ∩ a) ∪
(b⊥ ∩ a)) |
4 | | ancom 74 |
. . . . 5
(a⊥ ∩ b) = (b ∩
a⊥ ) |
5 | | ancom 74 |
. . . . 5
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
6 | 4, 5 | 2or 72 |
. . . 4
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((b ∩ a⊥ ) ∪ (b⊥ ∩ a⊥ )) |
7 | 3, 6 | 2or 72 |
. . 3
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ ((b
∩ a⊥ ) ∪ (b⊥ ∩ a⊥ ))) |
8 | | or4 84 |
. . 3
(((b ∩ a) ∪ (b⊥ ∩ a)) ∪ ((b
∩ a⊥ ) ∪ (b⊥ ∩ a⊥ ))) = (((b ∩ a) ∪
(b ∩ a⊥ )) ∪ ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ ))) |
9 | 7, 8 | ax-r2 36 |
. 2
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((b ∩ a) ∪
(b ∩ a⊥ )) ∪ ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ ))) |
10 | | df-cmtr 134 |
. 2
C (a, b) = (((a ∩
b) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
11 | | df-cmtr 134 |
. 2
C (b, a) = (((b ∩
a) ∪ (b ∩ a⊥ )) ∪ ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ ))) |
12 | 9, 10, 11 | 3tr1 63 |
1
C (a, b) = C (b, a) |