Proof of Theorem 3vded3
Step | Hyp | Ref
| Expression |
1 | | df-i0 43 |
. 2
(c →0 b) = (c⊥ ∪ b) |
2 | | ax-a3 32 |
. . 3
((c⊥ ∪ a⊥ ) ∪ b) = (c⊥ ∪ (a⊥ ∪ b)) |
3 | | cmtrcom 190 |
. . . . . . . . . . . . . . . 16
C (c, a) = C (a, c) |
4 | 3 | lor 70 |
. . . . . . . . . . . . . . 15
(c⊥ ∪ C
(c, a)) = (c⊥ ∪ C (a, c)) |
5 | | df-i0 43 |
. . . . . . . . . . . . . . 15
(c →0 C
(c, a)) = (c⊥ ∪ C (c, a)) |
6 | | df-i0 43 |
. . . . . . . . . . . . . . 15
(c →0 C
(a, c)) = (c⊥ ∪ C (a, c)) |
7 | 4, 5, 6 | 3tr1 63 |
. . . . . . . . . . . . . 14
(c →0 C
(c, a)) = (c
→0 C (a, c)) |
8 | | 3vded3.1 |
. . . . . . . . . . . . . 14
(c →0 C
(a, c)) = 1 |
9 | 7, 8 | ax-r2 36 |
. . . . . . . . . . . . 13
(c →0 C
(c, a)) = 1 |
10 | 9 | i0cmtrcom 495 |
. . . . . . . . . . . 12
c C a |
11 | 10 | comcom4 455 |
. . . . . . . . . . 11
c⊥ C
a⊥ |
12 | 11 | comcom 453 |
. . . . . . . . . 10
a⊥ C
c⊥ |
13 | | comid 187 |
. . . . . . . . . . 11
a C a |
14 | 13 | comcom3 454 |
. . . . . . . . . 10
a⊥ C
a |
15 | 12, 14 | fh1 469 |
. . . . . . . . 9
(a⊥ ∩ (c⊥ ∪ a)) = ((a⊥ ∩ c⊥ ) ∪ (a⊥ ∩ a)) |
16 | | df-i0 43 |
. . . . . . . . . . . 12
(c →0 a) = (c⊥ ∪ a) |
17 | 16 | ax-r1 35 |
. . . . . . . . . . 11
(c⊥ ∪ a) = (c
→0 a) |
18 | | 3vded3.2 |
. . . . . . . . . . 11
(c →0 a) = 1 |
19 | 17, 18 | ax-r2 36 |
. . . . . . . . . 10
(c⊥ ∪ a) = 1 |
20 | 19 | lan 77 |
. . . . . . . . 9
(a⊥ ∩ (c⊥ ∪ a)) = (a⊥ ∩ 1) |
21 | | dff 101 |
. . . . . . . . . . . . 13
0 = (a ∩ a⊥ ) |
22 | | ancom 74 |
. . . . . . . . . . . . 13
(a ∩ a⊥ ) = (a⊥ ∩ a) |
23 | 21, 22 | ax-r2 36 |
. . . . . . . . . . . 12
0 = (a⊥ ∩
a) |
24 | 23 | lor 70 |
. . . . . . . . . . 11
((a⊥ ∩ c⊥ ) ∪ 0) = ((a⊥ ∩ c⊥ ) ∪ (a⊥ ∩ a)) |
25 | 24 | ax-r1 35 |
. . . . . . . . . 10
((a⊥ ∩ c⊥ ) ∪ (a⊥ ∩ a)) = ((a⊥ ∩ c⊥ ) ∪ 0) |
26 | | or0 102 |
. . . . . . . . . 10
((a⊥ ∩ c⊥ ) ∪ 0) = (a⊥ ∩ c⊥ ) |
27 | 25, 26 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ c⊥ ) ∪ (a⊥ ∩ a)) = (a⊥ ∩ c⊥ ) |
28 | 15, 20, 27 | 3tr2 64 |
. . . . . . . 8
(a⊥ ∩ 1) =
(a⊥ ∩ c⊥ ) |
29 | | an1 106 |
. . . . . . . 8
(a⊥ ∩ 1) =
a⊥ |
30 | | ancom 74 |
. . . . . . . 8
(a⊥ ∩ c⊥ ) = (c⊥ ∩ a⊥ ) |
31 | 28, 29, 30 | 3tr2 64 |
. . . . . . 7
a⊥ = (c⊥ ∩ a⊥ ) |
32 | 31 | lor 70 |
. . . . . 6
(c⊥ ∪ a⊥ ) = (c⊥ ∪ (c⊥ ∩ a⊥ )) |
33 | | orabs 120 |
. . . . . 6
(c⊥ ∪ (c⊥ ∩ a⊥ )) = c⊥ |
34 | 32, 33 | ax-r2 36 |
. . . . 5
(c⊥ ∪ a⊥ ) = c⊥ |
35 | 34 | ax-r5 38 |
. . . 4
((c⊥ ∪ a⊥ ) ∪ b) = (c⊥ ∪ b) |
36 | 35 | ax-r1 35 |
. . 3
(c⊥ ∪ b) = ((c⊥ ∪ a⊥ ) ∪ b) |
37 | | df-i0 43 |
. . . 4
(c →0 (a →0 b)) = (c⊥ ∪ (a →0 b)) |
38 | | df-i0 43 |
. . . . 5
(a →0 b) = (a⊥ ∪ b) |
39 | 38 | lor 70 |
. . . 4
(c⊥ ∪ (a →0 b)) = (c⊥ ∪ (a⊥ ∪ b)) |
40 | 37, 39 | ax-r2 36 |
. . 3
(c →0 (a →0 b)) = (c⊥ ∪ (a⊥ ∪ b)) |
41 | 2, 36, 40 | 3tr1 63 |
. 2
(c⊥ ∪ b) = (c
→0 (a →0
b)) |
42 | | 3vded3.3 |
. 2
(c →0 (a →0 b)) = 1 |
43 | 1, 41, 42 | 3tr 65 |
1
(c →0 b) = 1 |