QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wcomcom GIF version

Theorem wcomcom 414
Description: Commutation is symmetric. Kalmbach 83 p. 22. (Contributed by NM, 13-Oct-1997.)
Hypothesis
Ref Expression
wcomcom.1 C (a, b) = 1
Assertion
Ref Expression
wcomcom C (b, a) = 1

Proof of Theorem wcomcom
StepHypRef Expression
1 cmtrcom 190 . 2 C (b, a) = C (a, b)
2 wcomcom.1 . 2 C (a, b) = 1
31, 2ax-r2 36 1 C (b, a) = 1
Colors of variables: term
Syntax hints:   = wb 1  1wt 8   C wcmtr 29
This theorem was proved from axioms:  ax-a2 31  ax-a3 32  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-cmtr 134
This theorem is referenced by:  wcomcom3  416  wcom3ii  419  wfh2  424  wcom2or  427  wnbdi  429  ska2  432  ska4  433  woml6  436
  Copyright terms: Public domain W3C validator