Proof of Theorem wdf-c1
Step | Hyp | Ref
| Expression |
1 | | cmtrcom 190 |
. 2
C (a, b) = C (b, a) |
2 | | df-cmtr 134 |
. 2
C (b, a) = (((b ∩
a) ∪ (b ∩ a⊥ )) ∪ ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ ))) |
3 | | df-t 41 |
. . . . 5
1 = (b ∪ b⊥ ) |
4 | 3 | bi1 118 |
. . . 4
(1 ≡ (b ∪ b⊥ )) = 1 |
5 | | wdf-c1.1 |
. . . . . 6
(a ≡ ((a ∩ b) ∪
(a ∩ b⊥ ))) = 1 |
6 | 5 | wcomlem 382 |
. . . . 5
(b ≡ ((b ∩ a) ∪
(b ∩ a⊥ ))) = 1 |
7 | | ax-a1 30 |
. . . . . . . . . . 11
b = b⊥
⊥ |
8 | 7 | lan 77 |
. . . . . . . . . 10
(a ∩ b) = (a ∩
b⊥ ⊥
) |
9 | 8 | ax-r5 38 |
. . . . . . . . 9
((a ∩ b) ∪ (a
∩ b⊥ )) = ((a ∩ b⊥ ⊥ ) ∪
(a ∩ b⊥ )) |
10 | | ax-a2 31 |
. . . . . . . . 9
((a ∩ b⊥ ⊥ ) ∪
(a ∩ b⊥ )) = ((a ∩ b⊥ ) ∪ (a ∩ b⊥ ⊥
)) |
11 | 9, 10 | ax-r2 36 |
. . . . . . . 8
((a ∩ b) ∪ (a
∩ b⊥ )) = ((a ∩ b⊥ ) ∪ (a ∩ b⊥ ⊥
)) |
12 | 11 | bi1 118 |
. . . . . . 7
(((a ∩ b) ∪ (a
∩ b⊥ )) ≡
((a ∩ b⊥ ) ∪ (a ∩ b⊥ ⊥ ))) =
1 |
13 | 5, 12 | wr2 371 |
. . . . . 6
(a ≡ ((a ∩ b⊥ ) ∪ (a ∩ b⊥ ⊥ ))) =
1 |
14 | 13 | wcomlem 382 |
. . . . 5
(b⊥ ≡
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ ))) = 1 |
15 | 6, 14 | w2or 372 |
. . . 4
((b ∪ b⊥ ) ≡ (((b ∩ a) ∪
(b ∩ a⊥ )) ∪ ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )))) = 1 |
16 | 4, 15 | wr2 371 |
. . 3
(1 ≡ (((b ∩ a) ∪ (b
∩ a⊥ )) ∪
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )))) = 1 |
17 | 16 | wr3 198 |
. 2
(((b ∩ a) ∪ (b
∩ a⊥ )) ∪
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ ))) = 1 |
18 | 1, 2, 17 | 3tr 65 |
1
C (a, b) = 1 |