Proof of Theorem i0cmtrcom
Step | Hyp | Ref
| Expression |
1 | | lea 160 |
. . . . . 6
(a ∩ b) ≤ a |
2 | | lea 160 |
. . . . . 6
(a ∩ b⊥ ) ≤ a |
3 | 1, 2 | lel2or 170 |
. . . . 5
((a ∩ b) ∪ (a
∩ b⊥ )) ≤ a |
4 | 3 | df-le2 131 |
. . . 4
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪ a) = a |
5 | | df-cmtr 134 |
. . . . . . . 8
C (a, b) = (((a ∩
b) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
6 | 5 | lor 70 |
. . . . . . 7
(a⊥ ∪ C
(a, b)) = (a⊥ ∪ (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) |
7 | 6 | ax-r1 35 |
. . . . . 6
(a⊥ ∪
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) = (a⊥ ∪ C (a, b)) |
8 | | ax-a2 31 |
. . . . . . 7
(a⊥ ∪
((a ∩ b) ∪ (a
∩ b⊥ ))) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ a⊥ ) |
9 | | ax-a2 31 |
. . . . . . . . . 10
(a⊥ ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a⊥ ) |
10 | | lea 160 |
. . . . . . . . . . . 12
(a⊥ ∩ b) ≤ a⊥ |
11 | | lea 160 |
. . . . . . . . . . . 12
(a⊥ ∩ b⊥ ) ≤ a⊥ |
12 | 10, 11 | lel2or 170 |
. . . . . . . . . . 11
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ a⊥ |
13 | 12 | df-le2 131 |
. . . . . . . . . 10
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ a⊥ ) = a⊥ |
14 | 9, 13 | ax-r2 36 |
. . . . . . . . 9
(a⊥ ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = a⊥ |
15 | 14 | lor 70 |
. . . . . . . 8
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(a⊥ ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ a⊥ ) |
16 | 15 | ax-r1 35 |
. . . . . . 7
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪ a⊥ ) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ (a⊥ ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) |
17 | | or12 80 |
. . . . . . 7
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
(a⊥ ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) = (a⊥ ∪ (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) |
18 | 8, 16, 17 | 3tr 65 |
. . . . . 6
(a⊥ ∪
((a ∩ b) ∪ (a
∩ b⊥ ))) = (a⊥ ∪ (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) |
19 | | df-i0 43 |
. . . . . 6
(a →0 C
(a, b)) = (a⊥ ∪ C (a, b)) |
20 | 7, 18, 19 | 3tr1 63 |
. . . . 5
(a⊥ ∪
((a ∩ b) ∪ (a
∩ b⊥ ))) = (a →0 C (a, b)) |
21 | | i0cmtrcom.1 |
. . . . 5
(a →0 C
(a, b)) = 1 |
22 | 20, 21 | ax-r2 36 |
. . . 4
(a⊥ ∪
((a ∩ b) ∪ (a
∩ b⊥ ))) =
1 |
23 | 4, 22 | lem3.1 443 |
. . 3
((a ∩ b) ∪ (a
∩ b⊥ )) = a |
24 | 23 | ax-r1 35 |
. 2
a = ((a ∩ b) ∪
(a ∩ b⊥ )) |
25 | 24 | df-c1 132 |
1
a C b |