Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comcom3 | GIF version |
Description: Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
comcom.1 | a C b |
Ref | Expression |
---|---|
comcom3 | a⊥ C b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comcom.1 | . . . 4 a C b | |
2 | 1 | comcom 453 | . . 3 b C a |
3 | 2 | comcom2 183 | . 2 b C a⊥ |
4 | 3 | comcom 453 | 1 a⊥ C b |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: comcom4 455 comcom7 460 fh2 470 com2or 483 comcmtr1 494 i3lem1 504 lem4 511 i3abs3 524 i3con 551 ud1lem2 561 ud3lem1a 566 ud3lem1c 568 ud3lem3 576 ud4lem1a 577 ud4lem1b 578 ud4lem1c 579 ud4lem1d 580 ud4lem1 581 ud5lem1a 586 u4lemaa 603 u3lemana 607 u4lemana 608 u5lemana 609 u2lemanb 616 u3lemanb 617 u4lemanb 618 u5lemanb 619 u2lemc4 702 u3lemc4 703 u4lemc4 704 u5lemc4 705 u4lemle2 718 u21lembi 727 u4lem1 737 u2lem3 750 u4lem4 759 u5lem5 765 u4lem6 768 u5lem6 769 u1lem11 780 u3lem8 783 u3lem10 785 u3lem13a 789 u3lem13b 790 3vded3 819 1oa 820 mlalem 832 bi3 839 bi4 840 imp3 841 mlaconj4 844 elimcons 868 comanblem1 870 mhlem1 877 mhlem2 878 marsdenlem1 880 marsdenlem2 881 oa3to4lem1 945 oa3to4lem2 946 oa4to6lem1 960 oa4to6lem2 961 oa4to6lem3 962 lem4.6.7 1103 |
Copyright terms: Public domain | W3C validator |