Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comm1 | GIF version |
Description: Commutation with 1. Kalmbach 83 p. 20. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
comm1 | 1 C a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-t 41 | . . 3 1 = (a ∪ a⊥ ) | |
2 | ancom 74 | . . . . . 6 (1 ∩ a) = (a ∩ 1) | |
3 | an1 106 | . . . . . 6 (a ∩ 1) = a | |
4 | 2, 3 | ax-r2 36 | . . . . 5 (1 ∩ a) = a |
5 | ancom 74 | . . . . . 6 (1 ∩ a⊥ ) = (a⊥ ∩ 1) | |
6 | an1 106 | . . . . . 6 (a⊥ ∩ 1) = a⊥ | |
7 | 5, 6 | ax-r2 36 | . . . . 5 (1 ∩ a⊥ ) = a⊥ |
8 | 4, 7 | 2or 72 | . . . 4 ((1 ∩ a) ∪ (1 ∩ a⊥ )) = (a ∪ a⊥ ) |
9 | 8 | ax-r1 35 | . . 3 (a ∪ a⊥ ) = ((1 ∩ a) ∪ (1 ∩ a⊥ )) |
10 | 1, 9 | ax-r2 36 | . 2 1 = ((1 ∩ a) ∪ (1 ∩ a⊥ )) |
11 | 10 | df-c1 132 | 1 1 C a |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-c1 132 |
This theorem is referenced by: wcom1 408 |
Copyright terms: Public domain | W3C validator |