Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > lecom | GIF version |
Description: Comparable elements commute. Beran 84 2.3(iii) p. 40. (Contributed by NM, 30-Aug-1997.) |
Ref | Expression |
---|---|
lecom.1 | a ≤ b |
Ref | Expression |
---|---|
lecom | a C b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orabs 120 | . . . 4 (a ∪ (a ∩ b⊥ )) = a | |
2 | 1 | ax-r1 35 | . . 3 a = (a ∪ (a ∩ b⊥ )) |
3 | lecom.1 | . . . . . 6 a ≤ b | |
4 | 3 | df2le2 136 | . . . . 5 (a ∩ b) = a |
5 | 4 | ax-r1 35 | . . . 4 a = (a ∩ b) |
6 | 5 | ax-r5 38 | . . 3 (a ∪ (a ∩ b⊥ )) = ((a ∩ b) ∪ (a ∩ b⊥ )) |
7 | 2, 6 | ax-r2 36 | . 2 a = ((a ∩ b) ∪ (a ∩ b⊥ )) |
8 | 7 | df-c1 132 | 1 a C b |
Colors of variables: term |
Syntax hints: ≤ wle 2 C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-le2 131 df-c1 132 |
This theorem is referenced by: comorr 184 coman1 185 gsth 489 gt1 492 i3bi 496 oi3ai3 503 lem4 511 u1lemc6 706 comi12 707 u1lemle1 710 u2lemle1 711 u3lemle1 712 u4lemle1 713 u5lemle1 714 u12lembi 726 u3lem15 795 bi1o1a 798 3vcom 813 3vded21 817 1oa 820 2oalem1 825 mlalem 832 bi3 839 bi4 840 orbi 842 negantlem1 848 elimconslem 867 elimcons 868 comanblem1 870 mhlemlem1 874 mhlem 876 marsdenlem3 882 marsdenlem4 883 mlaconjolem 885 mlaconjo 886 mhcor1 888 e2ast2 894 e2astlem1 895 govar 896 gomaex3lem1 914 gomaex3lem2 915 oa3to4lem1 945 oa3to4lem2 946 oa4to6lem1 960 oa4to6lem2 961 oa4to6lem3 962 oacom2 1012 oa3moa3 1029 lem4.6.2e1 1082 lem4.6.6i1j3 1094 lem4.6.7 1103 |
Copyright terms: Public domain | W3C validator |